计算机视觉——yolov3 阿里云环境配置

根据项目(https://github.com/eriklindernoren/PyTorch-YOLOv3)实施,采用阿里云的人工智能api平台,如有新手需要配置,请转到阿里云平台配置(其中第二节有相关配置内容)。

项目环境(要用阿里云的镜像环境,如有不同可能会出现别的情况)


配好该环境后,先运行第一步以防有库缺失

然后运行.sh文件

安装后继续运行另一个.sh文件(其中安装路径需要改变,具体改变如下)

改为

wget -c http://images.cocodataset.org/zips/val2014.zip
wget -c http://images.cocodataset.org/zips/train2014.zip

安装好的数据集应该有59000张左右的train图片(13G)和6G多的val图片,下载过程中有可能出现下载不全的问题(下载过程中没有中断重新下载应该就没问题)。

这个.sh文件运行完后应该会有这么几个文件被安装

其中强调一个问题,服务器不能够对tgz文件进行解压,因此需要先下载解压文件到线下,然后解压后转变成zip压缩文件上传,最后采用Python的解压方法将其变为labels文件。(具体去网上搜,一搜Python解压zip文件方式)

将这些文件按照一定的结构保存(都放在data文件下)

其中图片路径文件放在coco文件下(coco自己创建在data文件下),labels放在data文件下,数据集放在images文件下(images自己创建在data文件下),json文件放在annotations文件下(annotations自己创建在data文件下,这个好像会自动创建),目的是为了能够找到这些路径读取数据集(具体设置可看config文件中的coco.data)

另外,data中应该有个coco.names文件

这些都下载整理好以后,因为TensorFlow版本较高,我们需要对一些代码进行修改(如果可以用对应的版本更好,笔者没有找到)。

找到utils文件下的logger.py,将整个定义切换为下列代码(注释的是原来的代码,切换为没有注释的):

import tensorflow as tf


# class Logger(object):
#     def __init__(self, log_dir):
#         """Create a summary writer logging to log_dir."""
#         # self.writer = tf.summary.FileWriter(log_dir)
#         self.writer = tf.summary.create_file_writer(log_dir)

#     def scalar_summary(self, tag, value, step):
#         """Log a scalar variable."""
#         summary = tf.Summary(value=[tf.Summary.Value(tag=tag, simple_value=value)])
#         self.writer.add_summary(summary, step)

#     def list_of_scalars_summary(self, tag_value_pairs, step):
#         """Log scalar variables."""
#         summary = tf.Summary(value=[tf.Summary.Value(tag=tag, simple_value=value) for tag, value in tag_value_pairs])
#         self.writer.add_summary(summary, step)

        
class Logger(object):
    def __init__(self, log_dir):
        """Create a summary writer logging to log_dir."""
        # self.writer = tf.summary.FileWriter(log_dir)
        self.writer = tf.summary.create_file_writer(log_dir)

    def scalar_summary(self, tag, value, step):
        """Log a scalar variable."""
        #summary = tf.Summary(value=[tf.Summary.Value(tag=tag, simple_value=value)])
        #self.writer.add_summary(summary, step)
        with self.writer.as_default():
            tf.summary.scalar(tag, value, step=step)
            self.writer.flush()
        # summary = tf.Summary(value=[tf.Summary.Value(tag=tag, simple_value=value)])
        # self.writer.add_summary(summary, step)

    def list_of_scalars_summary(self, tag_value_pairs, step):
        """Log scalar variables."""
        # summary = tf.Summary(value=[tf.Summary.Value(tag=tag, simple_value=value) for tag, value in tag_value_pairs])
        #self.writer.add_summary(summary, step)
        with self.writer.as_default():
            for tag, value in tag_value_pairs:
                tf.summary.scalar(tag, value, step=step)
            self.writer.flush()
        # summary = tf.Summary(value=[tf.Summary.Value(tag=tag, simple_value=value) for tag, value in tag_value_pairs])
        # self.writer.add_summary(summary, step)

然后通过下列命令进行运行(正常到这里就可以了,可能有疏漏)

这个从README.md中找到即可,根据具体参数更改模型配置。

下面说一下自己遇到的两个问题:

1.如果出现NoneType报错,很有可能是之前所提到的路径放的不正确,请结合config和文章仔细检查一下;

2.如果出现路径找不到,比如某张图片缺失路径,请检查数据集中是否有该图片,如果没有则重新下载数据集,如果有检查路径是否正确。

如果有别的问题,请联系作者,作者也只是初步尝试,很有可能有失误(手动狗头)

基于Python+Flask+VUE在阿里云公网WEB端部署YOLOv5目标检测模型-毕业设计源码+使用文档(高分优秀项目) 该项目是个人高分毕业设计项目源码,已获导师指导认可通过,答辩评审分达到97分,在window10/11测试环境严格调试,下载即用,确保可以运行,部署教程齐全,也可以作为课程设计 基于Python+Flask+VUE在阿里云公网WEB端部署YOLOv5目标检测模型-毕业设计源码+使用文档(高分优秀项目) 该项目是个人高分毕业设计项目源码,已获导师指导认可通过,答辩评审分达到97分,在window10/11测试环境严格调试,下载即用,确保可以运行,部署教程齐全,也可以作为课程设计 基于Python+Flask+VUE在阿里云公网WEB端部署YOLOv5目标检测模型-毕业设计源码+使用文档(高分优秀项目) 该项目是个人高分毕业设计项目源码,已获导师指导认可通过,答辩评审分达到97分,在window10/11测试环境严格调试,下载即用,确保可以运行,部署教程齐全,也可以作为课程设计 基于Python+Flask+VUE在阿里云公网WEB端部署YOLOv5目标检测模型-毕业设计源码+使用文档(高分优秀项目) 该项目是个人高分毕业设计项目源码,已获导师指导认可通过,答辩评审分达到97分,在window10/11测试环境严格调试,下载即用,确保可以运行,部署教程齐全,也可以作为课程设计 基于Python+Flask+VUE在阿里云公网WEB端部署YOLOv5目标检测模型-毕业设计源码+使用文档(高分优秀项目) 该项目是个人高分毕业设计项目源码,已获导师指导认可通过,答辩评审分达到97分,在window10/11测试环境严格调试,下载即用,确保可以运行,部署教程齐全,也可以作为课程设计
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白1514

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值