客户消费偏好数据实战分析

读取数据

In [1]:

import pandas as pd

In [2]:

df = pd.read_csv("/home/mw/input/data9408/shopping_trends.csv")
df.head()

Out[2]:

Customer ID Age Gender Item Purchased Category Purchase Amount (USD) Location Size Color Season Review Rating Subscription Status Shipping Type Discount Applied Promo Code Used Previous Purchases Payment Method Frequency of Purchases
0 1 55 Male Blouse Clothing 53 Kentucky L Gray Winter 3.1 Yes Express Yes Yes 14 Venmo Fortnightly
1 2 19 Male Sweater Clothing 64 Maine L Maroon Winter 3.1 Yes Express Yes Yes 2 Cash Fortnightly
2 3 50 Male Jeans Clothing 73 Massachusetts S Maroon Spring 3.1 Yes Free Shipping Yes Yes 23 Credit Card Weekly
3 4 21 Male Sandals Footwear 90 Rhode Island M Maroon Spring 3.5 Yes Next Day Air Yes Yes 49 PayPal Weekly
4 5 45 Male Blouse Clothing 49 Oregon M Turquoise Spring 2.7 Yes Free Shipping Yes Yes 31 PayPal Annually

数据预处理

In [3]:

# 缺失值
df.dropna(axis=0, inplace=True)

# 删除重复值
df.drop_duplicates(keep="first", inplace=True)

# 删除 "Customer ID" 列
df.drop("Customer ID", axis=1, inplace=True)

# 列名汉化
df.rename(columns={"Age":"年龄","Gender":"性别","Item Purchased":"购买的商品","Category":"商品类别","Purchase Amount (USD)":"消费金额(美元)",\
 "Location":"购买地点","Size":"商品尺码","Color":"商品颜色","Season":"购买商品的季节","Review Rating":"客户评分","Subscription Status":"是否订阅",\
 "Shipping Type":"配送方式","Discount Applied":"是否折扣","Promo Code Used":"是否使用优惠码","Previous Purchases":"客户历史购买总数(不包括当前交易)",\
 "Payment Method":"支付方式","Frequency of Purchases":"客户购买频率"},inplace=True)

df.head()

Out[3]:

年龄 性别 购买的商品 商品类别 消费金额(美元) 购买地点 商品尺码 商品颜色 购买商品的季节 客户评分 是否订阅 配送方式 是否折扣 是否使用优惠码 客户历史购买总数(不包括当前交易) 支付方式 客户购买频率
0 55 Male Blouse Clothing 53 Kentucky L Gray Winter 3.1 Yes Express Yes Yes 14 Venmo Fortnightly
1 19 Male Sweater Clothing 64 Maine L Maroon Winter 3.1 Yes Express Yes Yes 2 Cash Fortnightly
2 50 Male Jeans Clothing 73 Massachusetts S Maroon Spring 3.1 Yes Free Shipping Yes Yes 23 Credit Card Weekly
3 21 Male Sandals Footwear 90 Rhode Island M Maroon Spring 3.5 Yes N
背景描述 客户购物偏好数据集提供了有关消费者行为和购买模式的宝贵见解。了解客户偏好和趋势对于企业定制产品、营销策略和整体客户体验至关重要。 本数据集捕捉了广泛的客户属性,包括年龄、性别、购买历史、首选支付方式、购买频率等。分析这些数据可以帮助企业做出明智的决策、优化产品和提高客户满意度。 本数据集包含与客户购物偏好相关的各种特征的 3900 条记录,为企业收集了必要的信息,以加强对客户群的了解。 数据说明 字段 说明 Customer ID 客户唯一标识符 Age 客户年龄 Gender 客户性别(男/女) Item Purchased 客户购买的商品 Category 购买商品的类别 Purchase Amount (USD) 购买金额(美元) Location 购买地点 Size 购买商品的尺码 Color 购买商品的颜色 Season 购买商品的季节 Review Rating 客户对购买商品的评分 Subscription Status 客户是否拥有订阅(是/否) Shipping Type 客户选择的配送方式 Discount Applied 是否应用了折扣(是/否) Promo Code Used 是否使用了优惠码(是/否) Previous Purchases 客户在该商店的历史购买总数,不包括当前交易 Payment Method 客户最常用的支付方式 Frequency of Purchases 客户购买频率(每周、每两周、每月等) 问题描述 分析不同客户群体的消费行为差异(按年龄段、性别、地区等划分客户群体) 分析不同类别商品的销售情况,找出畅销商品 分析各季节的销售趋势,确定高峰销售季节 分析优惠活动的效果,如折扣、优惠码的使用情况 分析客户忠诚度,如回购率、评分、购买频率等指标 分析付款方式偏好,优化支付流程 利用历史数据建立商品推荐系统 预测未来销量,进行库存管理和供应链规划
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

暴躁的秋秋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值