CNN卷积网络实现MNIST数据集手写数字识别

步骤一:加载MNIST数据集

train_data = MNIST(root='./data',train=True,download=False,transform=transforms.ToTensor())
train_loader = DataLoader(train_data,shuffle=True,batch_size=64)
# 测试数据集
test_data = MNIST(root='./data',train=False,download=False,transform=transforms.ToTensor())
test_loader = DataLoader(test_data,shuffle=False,batch_size=64)

首先,通过MNIST类创建了train_data对象,指定了数据集的路径root='./data',并且将数据集标记为训练集train=Truedownload=False表示不自动从网络上下载数据集,而是使用已经下载好的数据集。我是之前自己已经下载过该数据集所以这里填的是False,如果之前没有下载的话就要填True。下面测试集也是一样。transforms.ToTensor()将数据转换为张量形式。

然后,通过DataLoader类创建了train_loader对象,指定了使用train_data作为数据源。shuffle=True表示在每个epoch开始时,将数据打乱顺序。batch_size=64表示每次抓取64个样本。

接下来,同样的步骤也被用来创建了测试集的数据加载器test_loader。不同的是,这里将数据集标记为测试集train=False,并且shuffle=False表示不需要打乱顺序。

加载完的数据集存在MNIST文件夹的raw文件夹下内容如下:

其中t10k-images-idx3-ubyte是测试集的图像,t10k-labels-idx3-ubyte是测试集的标签。train-images-idx3-ubyte是训练集的图像,train-labels-idx1-ubyte是训练集的标签。

存下来的这些数据集是二进制的形式,可以通过下面的代码(1.py)读取:

"""
Created on Sat Jul 27 15:26:39 2024

@author: wangyiyuan
"""
# 导入包
import struct
import numpy as np
from PIL import Image

class MnistParser:
   # 加载图像
   def load_image(self, file_path):

       # 读取二进制数据
       binary = open(file_path,'rb').read()

       # 读取头文件
       fmt_head = '>iiii'
       offset = 0

       # 读取头文件
       magic_number,images_number,rows_number,columns_number = struct.unpack_from(fmt_head,binary,offset)

       # 打印头文件信息
       print('图片数量:%d,图片行数:%d,图片列数:%d'%(images_number,rows_number,columns_number))

       # 处理数据
       image_size = rows_number * columns_number
       fmt_data = '>'+str(image_size)+'B'
       offset = offset + struct.calcsize(fmt_head)

       # 读取数据
       images = np.empty((images_number,rows_number,columns_number))
       for i in range(images_number):
           images[i] = np.array(struct.unpack_from(fmt_data, binary, offset)).reshape((rows_number, columns_number))
           offset = offset + struct.calcsize(fmt_data)
           # 每1万张打印一次信息
           if (i+1) % 10000 == 0:
               print('> 已读取:%d张图片'%(i+1))

       # 返回数据
       return images_number,rows_number,columns_number,images


   # 加载标签
   def load_labels(self, file_path):
       # 读取数据
       binary = open(file_path,'rb').read()

       # 读取头文件
       fmt_head = '>ii'
       offset = 0

       # 读取头文件
       magic_number,items_number = struct.unpack_from(fmt_head,binary,offset)

       # 打印头文件信息
       print('标签数:%d'%(items_number))

       # 处理数据
       fmt_data = '>B'
       offset = offset + struct.calcsize(fmt_head)

       # 读取数据
       labels = np.empty((items_number))
       for i in range(items_number):
           labels[i] = struct.unpack_from(fmt_data, binary, offset)[0]
           offset = offset + struct.calcsize(fmt_data)
           # 每1万张打印一次信息
           if (i+1)%10000 == 0:
               print('> 已读取:%d个标签'%(i+1))

       # 返回数据
       return items_number,labels


   # 图片可视化
   def visualaztion(self, images, labels, path):
       d = {0:0, 1:0, 2:0, 3:0, 4:0, 5:0, 6:0, 7:0, 8:0, 9:0}
       for i in range(images.__len__()):
            im = Image.fromarray(np.uint8(images[i]))
            im.save(path + "%d_%d.png"%(labels[i], d[labels[i]]))
            d[labels[i]] += 1
            # im.show()
            
            if (i+1)%10000 == 0:
               print('> 已保存:%d个图片'%(i+1))
               

# 保存为图片格式
def change_and_save():
    mnist =  MnistParser()

    trainImageFile = './train-images-idx3-ubyte'
    _, _, _, images = mnist.load_image(trainImageFile)
    trainLabelFile = './train-labels-idx1-ubyte'
    _, labels = mnist.load_labels(trainLabelFile)
    mnist.visualaztion(images, labels, "./images/train/")

    testImageFile = './train-images-idx3-ubyte'
    _, _, _, images = mnist.load_image(testImageFile)
    testLabelFile = './train-labels-idx1-ubyte'
    _, labels = mnist.load_labels(testLabelFile)
    mnist.visualaztion(images, labels, "./images/test/")


# 测试
if __name__ == '__main__':
    change_and_save()


将这个1.py文件和下载好的数据集放在同一个文件夹下:

新建一个文件夹images,在文件夹images里面新建两个文件夹分别叫test和train。

运行完可以发现train和test里的内容如下:

步骤二:建立模型

class Model(nn.Module):
    def __init__(self):
        super(Model,self).__init__()
        self.linear1 = nn.Linear(784,256)
        self.linear2 = nn.Linear(256,64)
        self.linear3 = nn.Linear(64,10) # 10个手写数字对应的10个输出

    def forward(self,x):
        x = x.view(-1,784) # 变形
        x = torch.relu(self.linear1(x))
        x = torch.relu(self.linear2(x))
        # x = torch.relu(self.linear3(x))
        return x

这里是建立了一个神经网络模型类(Model)。这个模型有三个线性层(linear1、linear2、linear3)。输入维度为784(因为每一张图片的大小是28*28=784),输出维度为256、64、10(因为有十个类)。forward函数定义了模型的前向传播过程,其中x.view(-1, 784)将输入张量x变形为(batch_size, 784)的大小。然后经过三个线性层和relu激活函数进行运算,最后返回输出结果x。

步骤三:训练模型

model = Model()
criterion = nn.CrossEntropyLoss() # 交叉熵损失,相当于Softmax+Log+NllLoss
optimizer = torch.optim.SGD(model.parameters(),0.8) # 第一个参数是初始化参数值,第二个参数是学习率

# 模型训练
# def train():
for index,data in enumerate(train_loader):
        input,target = data # input为输入数据,target为标签
        optimizer.zero_grad() # 梯度清零
        y_predict = model(input) # 模型预测
        loss = criterion(y_predict,target) # 计算损失
        loss.backward() # 反向传播
        optimizer.step() # 更新参数
        if index % 100 == 0: # 每一百次保存一次模型,打印损失
            torch.save(model.state_dict(),"./model/model.pkl") # 保存模型
            torch.save(optimizer.state_dict(),"./model/optimizer.pkl")
            print("损失值为:%.2f" % loss.item())

首先创建了一个模型对象model,一个损失函数对象criterion和一个优化器对象optimizer。然后使用一个for循环遍历训练数据集train_loader,每次取出一个batch的数据。接着将优化器的梯度清零,然后使用模型前向传播得到预测结果y_predict,计算损失值loss,然后进行反向传播和参数更新。每训练100个batch,保存模型和优化器的参数,并打印当前的损失值。

步骤四:保存模型参数

if os.path.exists('./model/model.pkl'):
    model.load_state_dict(torch.load("./model/model.pkl")) # 加载保存模型的参数

在当前文件夹下新建一个名叫model的文件夹。保存步骤三中训练完模型的参数。

步骤五:检验模型


    correct = 0 # 正确预测的个数
    total = 0 # 总数
    with torch.no_grad(): # 测试不用计算梯度
        for data in test_loader:
            input,target = data
            output=model(input) # output输出10个预测取值,其中最大的即为预测的数
            probability,predict=torch.max(output.data,dim=1) # 返回一个元组,第一个为最大概率值,第二个为最大值的下标
            total += target.size(0) # target是形状为(batch_size,1)的矩阵,使用size(0)取出该批的大小
            correct += (predict == target).sum().item() # predict和target均为(batch_size,1)的矩阵,sum()求出相等的个数
        print("准确率为:%.2f" % (correct / total))


参数说明:

  • correct:记录正确预测的个数
  • total:记录总样本数
  • test_loader:测试集的数据加载器
  • input:输入数据
  • target:目标标签
  • output:模型的输出结果
  • probability:最大概率值
  • predict:最大值的下标

过程:

  • 使用torch.no_grad()包装测试过程,表示不需要计算梯度
  • 遍历测试集中的每个数据,获取输入数据和目标标签
  • 将输入数据输入模型,得到模型的输出结果
  • 使用torch.max()函数返回预测结果中的最大概率值和最大值的下标
  • 更新总数和正确预测的个数
  • 最后计算并输出准确率。

步骤六:检测自己的手写数据

if __name__ == '__main__':
    # 自定义测试
    image = Image.open('C:/Users/wangyiyuan/Desktop/20201116160729670.jpg') # 读取自定义手写图片
    image = image.resize((28,28)) # 裁剪尺寸为28*28
    image = image.convert('L') # 转换为灰度图像
    transform = transforms.ToTensor()
    image = transform(image)
    image = image.resize(1,1,28,28)
    output = model(image)
    probability,predict=torch.max(output.data,dim=1)
    print("此手写图片值为:%d,其最大概率为:%.2f" % (predict[0],probability))
    plt.title('此手写图片值为:{}'.format((int(predict))),fontname="SimHei")
    plt.imshow(image.squeeze())
    plt.show()

这里的C:/Users/wangyiyuan/Desktop/20201116160729670.jpg是我自己从网上找的的手写图片。这段代码意思如下:

  1. 打开并读取一张手写图片,图片的路径为'C:/Users/wangyiyuan/Desktop/20201116160729670.jpg'。
  2. 调整图片尺寸为28x28。
  3. 将图片转换为灰度图像,以便后续处理。
  4. 使用transforms.ToTensor()将图片转换为PyTorch张量。
  5. 调整图片尺寸为(1, 1, 28, 28)以适应模型的输入要求。
  6. 将处理后的图片输入模型,获取预测输出。
  7. 通过torch.max函数获得输出中的最大值及其索引,即预测的数字和其概率。
  8. 打印预测的数字和概率。
  9. 在图像上显示预测结果和手写图片。
  10. 展示图像。

步骤七:结果展示

我的原图是:

测试得到的结果为:


损失值为:4.16
损失值为:0.93
损失值为:0.31
损失值为:0.19
损失值为:0.24
损失值为:0.15
损失值为:0.13
损失值为:0.11
损失值为:0.18
损失值为:0.02
此手写图片值为:2,其最大概率为:6.57

  • 6
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: CNN卷积神经网络可以很好地实现MNIST手写数字识别数据集MNIST数据集是一个非常流行的手写数字识别数据集,包含60,000个训练样本和10,000个测试样本。CNN卷积神经网络可以通过卷积层、池化层和全连接层等结构,对图像进行特征提取和分类,从而实现对手写数字的识别。在实现过程中,需要对数据进行预处理、构建模型、训练模型和评估模型等步骤。 ### 回答2: MNIST机器学习领域中最基础的图像分类问题之一,目标是将手写数字识别成对应的数字。CNN卷积神经网络由于其较高的效果和较快的速度,被广泛应用于此类问题中。 首先,我们需要明确CNN卷积神经网络的基本结构。它由多个卷积层和池化层组成,其中卷积层用于提取图像中的特征,而池化层则用于降低数据维度,减少运算量。在最后一层全连接层,特征将被映射到数字1-10的输出,以进行分类。 对于MNIST手写数字数据集,我们需要对数据进行预处理和格式化,以适应卷积神经网络的输入。我们可以将每个图片的大小调整为28x28像素,并将其转换为黑白图像。由于图像中的每个像素都代表相应位置的亮度值,我们需要在神经网络中进行标准化和归一化。 接下来,我们可以使用Keras框架搭建一个简单的卷积神经网络。其中,我们可以通过添加卷积层和池化层来实现特征提取和减少数据维度。在第一个卷积层后,我们可以添加一个批标准化层,它可以使每个神经元的输出分布更加均衡,从而提高训练效果。在卷积神经网络的输出端,我们可以添加一个全连接层,用于进行分类。 在完成网络结构的搭建之后,我们需要对卷积神经网络进行训练。我们可以通过设置合适的损失函数和优化算法来实现。针对MNIST数据集,我们可以选择使用交叉熵作为损失函数,随机梯度下降作为优化算法。我们可以通过调整学习率、正则化等参数,来提高训练效果。 最后,我们可以将卷积神经网络应用到MNIST测试集中进行验证,并评估其识别准确率。通过逐步调整网络结构和参数,我们可以不断改进卷积神经网络的性能,并实现更准确的手写数字识别。 ### 回答3: MNIST手写数字识别是计算机视觉领域中一个经典的问题,它要求从图像中识别出手写的数字。而CNN卷积神经网络是目前最有效的解决方案之一。 CNN卷积神经网络是一种深度学习模型,通过输入层、卷积层、池化层和全连接层等模块组成。在MNIST手写数字识别中,图片输入层将长度为28*28的二维像素矩阵作为输入,经过卷积层、池化层、全连接层等几个步骤后输出对应的数字。 卷积层的作用是提取图像的特征,由于MNIST手写数字数据集的像素尺寸较小,因此用到的卷积核尺寸也较小。这里我们选取的卷积核为5*5,每个卷积核进行卷积时将每个像素与其周围的8个像素做卷积操作,这样可以从图像中提取更多的特征信息。 池化层的作用是减小图像的尺寸,在卷积层中提取的特征信息可能包含了相同重复或无用的信息,因此需要对其进行降维处理。在MNIST手写数字识别中,我们采取的是平均池化的方式,即将相邻的4个像素取平均值,将这个4*4的图像块变为一个单独的像素。 全连接层的作用是将提取出的特征信息映射到输出层,输出对应的数字。在MNIST手写数字识别中,我们选取两个全连接层,其中第一层的神经元数量为120,第二层的神经元数量为84。最后,输出层的神经元数为10,每个神经元对应一个数字。 在训练模型时,我们采用交叉熵损失函数和随机梯度下降法更新权重。具体来说,我们将训练集分成若干个批次(batch),每次训练只使用其中一个批次的数据并对网络进行反向传播更新权重。 实验结果表明,CNN卷积神经网络能够在MNIST手写数字识别数据集上达到98%以上的识别率,比传统的机器学习方法(如SVM等)具有更高的准确率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值