torch.nn.RNN()相关的参数设置

class torch.nn.RNN(input_size, hidden_size, num_layers=1, nonlinearity='tanh', bias=True, batch_first=False, dropout=0, bidirectional=False, proj_size=0)

在这里插入图片描述

import torch
import torch.nn as nn

# 定义 RNN 模型
class RNNModel(nn.Module):
    def __init__(self, input_size, hidden_size, num_layers, num_classes):
        super(RNNModel, self).__init__()
        self.hidden_size = hidden_size
        self.num_layers = num_layers
        self.rnn = nn.RNN(input_size, hidden_size, num_layers, batch_first=True)
        self.fc = nn.Linear(hidden_size, num_classes)

    def forward(self, x):
        # 初始化隐藏状态
        h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(x.device)
        
        # 前向传播
        out, _ = self.rnn(x, h0)
        
        # 取最后一个时间步的输出
        out = self.fc(out[:, -1, :])
        return out

# 超参数设置
input_size = 10   # 输入特征维度
hidden_size = 20  # 隐藏层神经元数量
num_layers = 2    # RNN 层数
num_classes = 5   # 输出类别数
sequence_length = 15  # 序列长度
batch_size = 3   # 批次大小

# 实例化模型
model = RNNModel(input_size, hidden_size, num_layers, num_classes)

# 打印模型结构
print(model)

# 创建输入数据 (batch_size, sequence_length, input_size)
inputs = torch.randn(batch_size, sequence_length, input_size)

# 前向传播
outputs = model(inputs)

# 打印输出
print(outputs)


假设你有一段语音信号,每段语音信号被切分为 15 个时间步,每个时间步包含 10 个特征(例如 MFCC 特征)。你希望使用一个两层的 RNN 模型来处理这些数据,并且最终的输出是 5 个类别中的一个。

input_size = 10   # 每个时间步的特征向量长度
sequence_length = 15  # 每个输入序列的时间步数量
batch_size = 3   # 每个训练批次中的样本数量

# 创建输入数据 (batch_size, sequence_length, input_size)
inputs = torch.randn(batch_size, sequence_length, input_size)

以上代码创建了一个形状为 (3, 15, 10) 的输入张量,表示 3 个样本,每个样本包含 15 个时间步,每个时间步的特征向量长度为 10。这就定义了 input_size 的具体含义,即每个时间步输入特征的维度。

在这里插入图片描述

写一个单层、单向的RNN模型训练实例:

import torch
import torch.nn as nn
import numpy as np

# 1. 数据准备
# 假设我们的输入序列是一个简单的正弦波序列
time_steps = np.linspace(0, np.pi, 100)
data = np.sin(time_steps)

# 我们将使用前90个时间步作为训练数据,后10个时间步用于预测
train_data = data[:90]
test_data = data[90:]

# 转换为 PyTorch 张量
train_data = torch.FloatTensor(train_data).view(-1)
test_data = torch.FloatTensor(test_data).view(-1)


# 创建输入序列和目标序列
def create_inout_sequences(input_data, tw):
    inout_seq = []
    L = len(input_data)
    for i in range(L - tw):
        train_seq = input_data[i:i + tw]
        train_label = input_data[i + tw:i + tw + 1]
        inout_seq.append((train_seq, train_label))
    return inout_seq


# 序列长度
seq_length = 10
train_inout_seq = create_inout_sequences(train_data, seq_length)


# 2. 定义 RNN 模型
class RNNModel(nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super(RNNModel, self).__init__()
        self.hidden_size = hidden_size
        self.rnn = nn.RNN(input_size, hidden_size, batch_first=True)
        self.fc = nn.Linear(hidden_size, output_size)

    def forward(self, x, hidden):
        out, hidden = self.rnn(x, hidden)
        out = self.fc(out[:, -1, :])
        return out, hidden

    def init_hidden(self, batch_size):
        return torch.zeros(1, batch_size, self.hidden_size)


# 超参数设置
input_size = 1
hidden_size = 50
output_size = 1
learning_rate = 0.01

# 实例化模型
model = RNNModel(input_size, hidden_size, output_size)

# 定义损失函数和优化器
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

# 3. 训练模型
epochs =  200
for epoch in range(epochs):
    for seq, labels in train_inout_seq:
        optimizer.zero_grad()
        seq = seq.view(1, -1, input_size)
        labels = labels.view(1, -1, output_size)
        hidden = model.init_hidden(1)

        y_pred, hidden = model(seq, hidden)
        loss = criterion(y_pred, labels)
        loss.backward()
        optimizer.step()

    if epoch % 10 == 0:
        print(f'Epoch {epoch + 1}/{epochs}, Loss: {loss.item()}')

# 4. 预测
model.eval()
test_inputs = train_data[-seq_length:].tolist()
model.hidden = model.init_hidden(1)

for i in range(len(test_data)):
    seq = torch.FloatTensor(test_inputs[-seq_length:])
    seq = seq.view(1, -1, input_size)
    with torch.no_grad():
        model.hidden = model.init_hidden(1)
        y_pred, model.hidden = model(seq, model.hidden)
        test_inputs.append(y_pred.item())

# 将结果转换为 numpy 数组
predicted = np.array(test_inputs[seq_length:])

# 5. 绘图
import matplotlib.pyplot as plt

plt.figure(figsize=(10, 5))
plt.plot(time_steps, data, label='True Data')
plt.plot(time_steps[90:], predicted, label='Predicted Data', linestyle='--')
plt.legend()
plt.show()

写一个单层、双向的RNN模型训练实例:

import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt

# 1. 数据准备
# 假设我们的输入序列是一个简单的正弦波序列
time_steps = np.linspace(0, np.pi, 100)
data = np.sin(time_steps)

# 我们将使用前90个时间步作为训练数据,后10个时间步用于预测
train_data = data[:90]
test_data = data[90:]

# 转换为 PyTorch 张量
train_data = torch.FloatTensor(train_data).view(-1)
test_data = torch.FloatTensor(test_data).view(-1)

# 创建输入序列和目标序列
def create_inout_sequences(input_data, tw):
    inout_seq = []
    L = len(input_data)
    for i in range(L-tw):
        train_seq = input_data[i:i+tw]
        train_label = input_data[i+tw:i+tw+1]
        inout_seq.append((train_seq, train_label))
    return inout_seq

# 序列长度
seq_length = 10
train_inout_seq = create_inout_sequences(train_data, seq_length)

# 2. 定义双向 RNN 模型
class BiRNNModel(nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super(BiRNNModel, self).__init__()
        self.hidden_size = hidden_size
        self.rnn = nn.RNN(input_size, hidden_size, batch_first=True, bidirectional=True)
        self.fc = nn.Linear(hidden_size * 2, output_size)  # *2 because of bidirectional

    def forward(self, x, hidden):
        out, hidden = self.rnn(x, hidden)
        out = self.fc(out[:, -1, :])  # We take the output from the last time step
        return out, hidden

    def init_hidden(self, batch_size):
        # Because it's bidirectional, we need to initialize two hidden states
        return torch.zeros(2, batch_size, self.hidden_size)

# 超参数设置
input_size = 1
hidden_size = 50
output_size = 1
learning_rate = 0.01

# 实例化模型
model = BiRNNModel(input_size, hidden_size, output_size)

# 定义损失函数和优化器
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

# 3. 训练模型
epochs = 100
for epoch in range(epochs):
    for seq, labels in train_inout_seq:
        optimizer.zero_grad()
        seq = seq.view(1, -1, input_size)
        labels = labels.view(1, -1, output_size)
        hidden = model.init_hidden(1)

        y_pred, hidden = model(seq, hidden)
        loss = criterion(y_pred, labels)
        loss.backward()
        optimizer.step()
    
    if epoch % 10 == 0:
        print(f'Epoch {epoch+1}/{epochs}, Loss: {loss.item()}')

# 4. 预测
model.eval()
test_inputs = train_data[-seq_length:].tolist()
model.hidden = model.init_hidden(1)

for i in range(len(test_data)):
    seq = torch.FloatTensor(test_inputs[-seq_length:])
    seq = seq.view(1, -1, input_size)
    with torch.no_grad():
        model.hidden = model.init_hidden(1)
        y_pred, model.hidden = model(seq, model.hidden)
        test_inputs.append(y_pred.item())

# 将结果转换为 numpy 数组
predicted = np.array(test_inputs[seq_length:])

# 5. 绘图
plt.figure(figsize=(10, 5))
plt.plot(time_steps, data, label='True Data')
plt.plot(time_steps[90:], predicted, label='Predicted Data', linestyle='--')
plt.legend()
plt.show()

在这里插入图片描述

LSTM(Long Short-Term Memory)是一种循环神经网络(RNN)的变体,用于处理序列数据和处理长期依赖关系。在PyTorch中,LSTM可以通过torch.nn模块进行实现。 下面是一个使用torch.nn.LSTM实现LSTM模型的简单示例: ```python import torch import torch.nn as nn # 定义LSTM模型 class LSTMModel(nn.Module): def __init__(self, input_size, hidden_size, num_layers, num_classes): super(LSTMModel, self).__init__() self.hidden_size = hidden_size self.num_layers = num_layers self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True) self.fc = nn.Linear(hidden_size, num_classes) def forward(self, x): h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device) c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device) out, _ = self.lstm(x, (h0, c0)) out = self.fc(out[:, -1, :]) return out # 设置超参数 input_size = 10 hidden_size = 32 num_layers = 2 num_classes = 2 sequence_length = 20 batch_size = 16 # 随机生成输入数据 x = torch.randn(batch_size, sequence_length, input_size).to(device) # 创建LSTM模型实例 model = LSTMModel(input_size, hidden_size, num_layers, num_classes).to(device) # 运行前向传播 outputs = model(x) print(outputs.shape) # 输出形状为(batch_size, num_classes) ``` 在这个示例中,我们定义了一个名为LSTMModel的自定义模型类,继承自nn.Module。模型的核心部分是一个nn.LSTM层和一个全连接层nn.Linear。在forward方法中,我们首先初始化LSTM的初始隐藏状态h0和内部状态c0,然后将输入数据x传入LSTM层,最后将LSTM最后一个时间步的输出经过全连接层得到最终预测结果。 你可以根据自己的需求调整模型的输入大小、隐藏状态大小、层数和输出类别数,并通过传入适当的输入数据运行前向传播。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值