YOLOv5改进 | Neck | 注意力尺度序列融合的检测框架ASF-YOLO【含分割,检测yaml文件】

秋招面试专栏推荐 :深度学习算法工程师面试问题总结【百面算法工程师】——点击即可跳转


💡💡💡本专栏所有程序均经过测试,可成功执行💡💡💡


专栏目录: 《YOLOv5入门 + 改进涨点》专栏介绍 & 专栏目录 |目前已有50+篇内容,内含各种Head检测头、损失函数Loss、Backbone、Neck、NMS等创新点改进

本文介绍了一种基于注意力尺度序列融合的一阶段目标检测框架(ASF-YOLO),该框架结合了空间和尺度特征,用于准确快速的细胞实例分割。在YOLO分割框架的基础上,我们采用了尺度序列特征融合(SSFF)模块来增强网络的多尺度信息提取能力,以及三级特征编码(TFE)模块来融合不同尺度的特征图,以增加详细信息。我们进一步引入了通道和位置注意力机制(CPAM),以整合SSFF和TFE模块,该机制专注于信息丰富的通道和与空间位置相关的小物体,以提升检测和分割性能。文章在介绍主要的原理后,将手把手教学如何进行模块的代码添加和修改,并将修改后的完整代码放在文章的最后,方便大家一键运行,小白也可轻松上手实践。对于学有余力的同学,可以挑战进阶模块。文章内容丰富,可以帮助您更好地面对深度学习目标检测YOLO系列的挑战

专栏地址YOLOv5改进+入门——持续更新各种有效涨点方法——点击即可跳转

*注:因为ASF-YOLO支持语义分割,因此用yolov5-7.0作为基础版本,其他文章若没有特别说明,仍然采用YOLOv5-6.1 

目录

 1.原理

2. ASF-YOLO代码实现

2.1 将ASF-YOLO添加到YOLOv5中

2.2 新增yaml文件

2.3 注册模块

2.4 执行程序

3. 完整代码分享

4. GFLOPs

5. 进阶

6. 总结


1.原理

论文地址:ASF-YOLO: A Novel YOLO Model with Attentional Scale Sequence Fusion for Cell Instance Segmentation——点击即可跳转

官方代码:官方代码仓库——点击即可跳转

ASF-YOLO是一种基于YOLO(You Only Look Once)框架的改进模型,专门用于细胞实例分割。它通过结合空间和尺度特征,提供了更准确和快速的细胞实例分割。ASF-YOLO的主要原理包括以下几个方面:

1. YOLO框架的基础结构

ASF-YOLO基于YOLO框架,该框架包括三个主要部分:骨干网络(backbone)、颈部网络(neck)和头部网络(head)。其中,骨干网络负责在不同粒度上提取图像特征,颈部网络进行多尺度特征融合,头部网络则用于目标的边界框预测和分割掩码生成。

2. 规模序列特征融合模块(SSFF)

ASF-YOLO引入了SSFF模块,该模块通过归一化、上采样和多尺度特征的3D卷积,结合了不同尺度的全局语义信息。这种方法有效地处理了不同大小、方向和长宽比的物体,提升了分割性能。

3. 三重特征编码器模块(TFE)

TFE模块融合了不同尺度(大、中、小)的特征图,捕捉了小物体的细节信息。通过将这些详细特征整合到每个特征分支中,TFE模块增强了对密集细胞的小物体检测能力。

4. 通道和位置注意力机制(CPAM)

CPAM模块集成了来自SSFF和TFE模块的特征信息。它通过适应性地调整对相关通道和空间位置的关注,提高了小物体的检测和分割精度。

5. 高效的损失函数和后处理方法

ASF-YOLO在训练阶段使用了EIoU(Enhanced Intersection over Union)损失函数,该函数比传统的CIoU(Complete IoU)更能捕捉小物体的位置关系。此外,ASF-YOLO还在后处理阶段采用了软非极大值抑制(Soft-NMS),进一步改善了密集重叠细胞的检测问题。

结论

ASF-YOLO通过引入SSFF、TFE和CPAM模块,优化了YOLO框架在细胞实例分割中的性能,使其在处理小、密集和重叠物体时表现出色。这些创新使得ASF-YOLO在医学图像分析和细胞生物学领域具有广泛的应用潜力。

2. ASF-YOLO代码实现

2.1 将ASF-YOLO添加到YOLOv5中

关键步骤一将下面代码添加到 yolov5/models/common.py中


import torch.nn.functional as F
 
class DownSample(nn.Module):
    def __init__(self, c1, c2,k=2):
        super(DownSample, self).__init__()
        self.maxpool = nn.MaxPool2d(kernel_size=k, stride=k)
        self.avgpool = nn.AvgPool2d(kernel_size=k, stride=k)
        self.cv = Conv(c1, c2, 1, 1)

    def forward(self, x):
        x1 = self.maxpool(x)
        x2 = self.avgpool(x)
        x = x1 + x2
        x = self.cv(x)
        return x
class Zoom_cat(nn.Module):
    def __init__(self, in_dim):
        super().__init__()
        #self.conv_l_post_down = Conv(in_dim, 2*in_dim, 3, 1, 1)

    def forward(self, x):
        """l,m,s表示大中小三个尺度,最终会被整合到m这个尺度上"""
        l, m, s = x[0], x[1], x[2]
        tgt_size = m.shape[2:]
        l = F.adaptive_max_pool2d(l, tgt_size) + F.adaptive_avg_pool2d(l, tgt_size)
        #l = self.conv_l_post_down(l)
        # m = self.conv_m(m)
        # s = self.conv_s_pre_up(s)
        s = F.interpolate(s, m.shape[2:], mode='nearest')
        # s = self.conv_s_post_up(s)
        lms = torch.cat([l, m, s], dim=1)
        return lms
class ScalSeq(nn.Module):
    def __init__(self, channel):
        super(ScalSeq, self).__init__()
        self.conv1 =  Conv(512, channel,1)
        self.conv2 =  Conv(1024, channel,1)
        self.conv3d = nn.Conv3d(channel,channel,kernel_size=(1,1,1))
        self.bn = nn.BatchNorm3d(channel)
        self.act = nn.LeakyReLU(0.1)
        self.pool_3d = nn.MaxPool3d(kernel_size=(3,1,1))

    def forward(self, x):
        p3, p4, p5 = x[0],x[1],x[2]
        p4_2 = self.conv1(p4)
        p4_2 = F.interpolate(p4_2, p3.size()[2:], mode='nearest')
        p5_2 = self.conv2(p5)
        p5_2 = F.interpolate(p5_2, p3.size()[2:], mode='nearest')
        p3_3d = torch.unsqueeze(p3, -3)
        p4_3d = torch.unsqueeze(p4_2, -3)
        p5_3d = torch.unsqueeze(p5_2, -3)
        combine = torch.cat([p3_3d,p4_3d,p5_3d],dim = 2)
        conv_3d = self.conv3d(combine)
        bn = self.bn(conv_3d)
        act = self.act(bn)
        x = self.pool_3d(act)
        x = torch.squeeze(x, 2)
        return x
class Add(nn.Module):
    # Concatenate a list of tensors along dimension
    def __init__(self, ch = 256):
        super().__init__()

    def forward(self, x):
        input1,input2 = x[0],x[1]
        x = input1 + input2
        return x
class channel_att(nn.Module):
    def __init__(self, channel, b=1, gamma=2):
        super(channel_att, self).__init__()
        kernel_size = int(abs((math.log(channel, 2) + b) / gamma))
        kernel_size = kernel_size if kernel_size % 2 else kernel_size + 1
        
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.conv = nn.Conv1d(1, 1, kernel_size=kernel_size, padding=(kernel_size - 1) // 2, bias=False) 
        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        y = self.avg_pool(x)
        y = y.squeeze(-1)
        y = y.transpose(-1, -2)
        y = self.conv(y).transpose(-1, -2).unsqueeze(-1)
        y = self.sigmoid(y)
        return x * y.expand_as(x)
class local_att(nn.Module):
    def __init__(self, channel, reduction=16):
        super(local_att, self).__init__()
        
        self.conv_1x1 = nn.Conv2d(in_channels=channel, out_channels=channel//reduction, kernel_size=1, stride=1, bias=False)
 
        self.relu   = nn.ReLU()
        self.bn     = nn.BatchNorm2d(channel//reduction)
 
        self.F_h = nn.Conv2d(in_channels=channel//reduction, out_channels=channel, kernel_size=1, stride=1, bias=False)
        self.F_w = nn.Conv2d(in_channels=channel//reduction, out_channels=channel, kernel_size=1, stride=1, bias=False)
 
        self.sigmoid_h = nn.Sigmoid()
        self.sigmoid_w = nn.Sigmoid()
 
    def forward(self, x):
        _, _, h, w = x.size()
        
        x_h = torch.mean(x, dim = 3, keepdim = True).permute(0, 1, 3, 2)
        x_w = torch.mean(x, dim = 2, keepdim = True)
 
        x_cat_conv_relu = self.relu(self.bn(self.conv_1x1(torch.cat((x_h, x_w), 3))))
 
        x_cat_conv_split_h, x_cat_conv_split_w = x_cat_conv_relu.split([h, w], 3)
 
        s_h = self.sigmoid_h(self.F_h(x_cat_conv_split_h.permute(0, 1, 3, 2)))
        s_w = self.sigmoid_w(self.F_w(x_cat_conv_split_w))
 
        out = x * s_h.expand_as(x) * s_w.expand_as(x)
        return out
class attention_model(nn.Module):
    # Concatenate a list of tensors along dimension
    def __init__(self, ch = 256):
        super().__init__()
        self.channel_att = channel_att(ch)
        self.local_att = local_att(ch)
    def forward(self, x):
        input1,input2 = x[0],x[1]
        input1 = self.channel_att(input1)
        x = input1 + input2
        x = self.local_att(x)
        return x

2.2 新增yaml文件

关键步骤二在下/yolov5-6.1/models下新建文件 yolov5_ASF.yaml并将下面代码复制进去

  • Seg【分割】 
# ASF-YOLO based on YOLOv5 by Ultralytics, GPL-3.0 license

# Parameters
nc: 80  # number of classes
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

# ASF-YOLO backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 6, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 3, C3, [1024]],
   [-1, 1, SPPF, [1024, 5]],  # 9
  ]

# ASF-YOLO head
head:
  [[-1, 1, Conv, [512, 1, 1]], #10
   [4, 1, Conv, [512, 1, 1]], #11
   [[-1, 6, -2], 1, Zoom_cat, [512]],  # 12 cat backbone P4
   [-1, 3, C3, [512, False]],  # 13

   [-1, 1, Conv, [256, 1, 1]], #14
   [2, 1, Conv, [256, 1, 1]], #15
   [[-1, 4, -2], 1, Zoom_cat, [256]],  #16  cat backbone P3
   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)

   [-1, 1, Conv, [256, 3, 2]], #18
   [[-1, 14], 1, Concat, [1]],  #19 cat head P4
   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)

   [-1, 1, Conv, [512, 3, 2]], #21
   [[-1, 10], 1, Concat, [1]],  #22 cat head P5
   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)

   [[4, 6, 8], 1, ScalSeq, [256]], #24 args[inchane]
   [[17, -1], 1, attention_model, [256]], #25


   [[-1, 20, 23], 1, Segment, [nc, anchors, 32, 256]],  # Detect(P3, P4, P5)
  ]
  • OD【检测】
# ASF-YOLO based on YOLOv5 by Ultralytics, GPL-3.0 license
 
# Parameters
nc: 80  # number of classes
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32
 
# ASF-YOLO backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 6, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 3, C3, [1024]],
   [-1, 1, SPPF, [1024, 5]],  # 9
  ]
 
# ASF-YOLO head
head:
  [[-1, 1, Conv, [512, 1, 1]], #10
   [4, 1, Conv, [512, 1, 1]], #11
   [[-1, 6, -2], 1, Zoom_cat, [512]],  # 12 cat backbone P4
   [-1, 3, C3, [512, False]],  # 13
 
   [-1, 1, Conv, [256, 1, 1]], #14
   [2, 1, Conv, [256, 1, 1]], #15
   [[-1, 4, -2], 1, Zoom_cat, [256]],  #16  cat backbone P3
   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)
 
   [-1, 1, Conv, [256, 3, 2]], #18
   [[-1, 14], 1, Concat, [1]],  #19 cat head P4
   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)
 
   [-1, 1, Conv, [512, 3, 2]], #21
   [[-1, 10], 1, Concat, [1]],  #22 cat head P5
   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)
 
   [[4, 6, 8], 1, ScalSeq, [256]], #24 args[inchane]
   [[17, -1], 1, attention_model, [256]], #25
 
 
   [[-1, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]

温馨提示:本文只是对yolov5l基础上添加模块,如果要对yolov8n/l/m/x进行添加则只需要指定对应的depth_multiple 和 width_multiple。


# YOLOv5n
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.25  # layer channel multiple
 
# YOLOv5s
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple
 
# YOLOv5l 
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple
 
# YOLOv5m
depth_multiple: 0.67  # model depth multiple
width_multiple: 0.75  # layer channel multiple
 
# YOLOv5x
depth_multiple: 1.33  # model depth multiple
width_multiple: 1.25  # layer channel multiple

2.3 注册模块

关键步骤三在yolo.py的parse_model函数中注册

  elif m is ScalSeq:
            c2 = args[0]
        elif m is Add:
            c2 = args[0]
        elif m is Zoom_cat:
            c2 = 3*args[0]
        elif m is attention_model:
            c2 = args[0]

2.4 执行程序

在train.py中,将cfg的参数路径设置为yolov5_ASF.yaml的路径

建议大家写绝对路径,确保一定能找到

如果报错:

 YOLO max_pool3d_with_indices_backward_cuda does not have a deterministic implementation

在train.py316行处添加

            torch.use_deterministic_algorithms(False)
            scaler.scale(loss).backward()
            torch.use_deterministic_algorithms(True)

🚀运行程序,如果出现下面的内容则说明添加成功🚀 

from  n    params  module                                  arguments                     
  0                -1  1      7040  models.common.Conv                      [3, 64, 6, 2, 2]              
  1                -1  1     73984  models.common.Conv                      [64, 128, 3, 2]               
  2                -1  3    156928  models.common.C3                        [128, 128, 3]                 
  3                -1  1    295424  models.common.Conv                      [128, 256, 3, 2]              
  4                -1  6   1118208  models.common.C3                        [256, 256, 6]                 
  5                -1  1   1180672  models.common.Conv                      [256, 512, 3, 2]              
  6                -1  9   6433792  models.common.C3                        [512, 512, 9]                 
  7                -1  1   4720640  models.common.Conv                      [512, 1024, 3, 2]             
  8                -1  3   9971712  models.common.C3                        [1024, 1024, 3]               
  9                -1  1   2624512  models.common.SPPF                      [1024, 1024, 5]               
 10                -1  1    525312  models.common.Conv                      [1024, 512, 1, 1]             
 11                 4  1    132096  models.common.Conv                      [256, 512, 1, 1]              
 12       [-1, 6, -2]  1         0  models.common.Zoom_cat                  [512]                         
 13                -1  3   3019776  models.common.C3                        [1536, 512, 3, False]         
 14                -1  1    131584  models.common.Conv                      [512, 256, 1, 1]              
 15                 2  1     33280  models.common.Conv                      [128, 256, 1, 1]              
 16       [-1, 4, -2]  1         0  models.common.Zoom_cat                  [256]                         
 17                -1  3    756224  models.common.C3                        [768, 256, 3, False]          
 18                -1  1    590336  models.common.Conv                      [256, 256, 3, 2]              
 19          [-1, 14]  1         0  models.common.Concat                    [1]                           
 20                -1  3   2495488  models.common.C3                        [512, 512, 3, False]          
 21                -1  1   2360320  models.common.Conv                      [512, 512, 3, 2]              
 22          [-1, 10]  1         0  models.common.Concat                    [1]                           
 23                -1  3   9971712  models.common.C3                        [1024, 1024, 3, False]        
 24         [4, 6, 8]  1    460544  models.common.ScalSeq                   [256]                         
 25          [17, -1]  1     12325  models.common.attention_model           [256]                         
 26      [-1, 20, 23]  1    457725  models.yolo.Detect                      [80, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [256, 512, 1024]]
YOLOv5-ASF summary: 396 layers, 47529634 parameters, 47529634 gradients, 117.9 GFLOPs

3. 完整代码分享

https://pan.baidu.com/s/1FTaIh8oaRM9BeXdcGb5bMQ?pwd=xk5j

提取码: xk5j 

4. GFLOPs

关于GFLOPs的计算方式可以查看百面算法工程师 | 卷积基础知识——Convolution

未改进的GFLOPs

img

改进后的GFLOPs

现在手上没有卡了,等过段时候有卡了把这补上,需要的同学自己测一下

5. 进阶

可以结合损失函数或者卷积模块进行多重改进

YOLOv5改进 | 损失函数 | EIoU、SIoU、WIoU、DIoU、FocuSIoU等多种损失函数——点击即可跳转

6. 总结

ASF-YOLO是一种基于YOLO(You Only Look Once)框架的改进模型,专门用于细胞实例分割。其主要原理包括利用CSPDarknet53骨干网络进行多尺度特征提取,然后通过规模序列特征融合模块(SSFF)和三重特征编码器模块(TFE)进行多尺度和细节特征的融合。该模型还引入了通道和位置注意力机制(CPAM),通过适应性地调整对相关通道和空间位置的关注,增强了小物体的检测和分割能力。在检测和分割阶段,ASF-YOLO使用增强的EIoU损失函数优化边界框的位置关系,并通过头部网络生成分割掩码。最后,在后处理阶段,ASF-YOLO采用软非极大值抑制(Soft-NMS)方法处理密集重叠的检测框,从而提高检测精度和分割性能。通过这些创新,ASF-YOLO在医学图像分析和细胞实例分割任务中表现出色。 

  • 12
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

kay_545

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值