基于yolov8的实例分割全过程详细教学

参考文献
https://blog.csdn.net/qq_51539952/article/details/136361107
https://blog.csdn.net/m0_51530640/article/details/129975257
感谢两位的描述
当然。上述已经很精细了
我这里是我自己做一个总结与备份

(1)制作数据集
安装:pip install labelme
任意文件下下面新建txt、images、json、split四个文件夹
然后记得点一下“文件-自动保存”
然后把json、图的数据放到对应的文件夹内

这里由于保存的是json所以要更新为txt格式,记得修改路径

# -*- coding: utf-8 -*-
import json
import os
import argparse
from tqdm import tqdm
 
 
def convert_label_json(json_dir, save_dir, classes):
    json_paths = os.listdir(json_dir)
    classes = classes.split(',')
 
    for json_path in tqdm(json_paths):
        # for json_path in json_paths:
        path = os.path.join(json_dir, json_path)
        with open(path, 'r') as load_f:
            json_dict = json.load(load_f)
        h, w = json_dict['imageHeight'], json_dict['imageWidth']
 
        # save txt path
        txt_path = os.path.join(save_dir, json_path.replace('json', 'txt'))
        txt_file = open(txt_path, 'w')
 
        for shape_dict in json_dict['shapes']:
            label = shape_dict['label']
            label_index = classes.index(label)
            points = shape_dict['points']
 
            points_nor_list = []
 
            for point in points:
                points_nor_list.append(point[0] / w)
                points_nor_list.append(point[1] / h)
 
            points_nor_list = list(map(lambda x: str(x), points_nor_list))
            points_nor_str = ' '.join(points_nor_list)
 
            label_str = str(label_index) + ' ' + points_nor_str + '\n'
            txt_file.writelines(label_str)
 
 
if __name__ == "__main__":
    """
    python json2txt_nomalize.py --json-dir my_datasets/color_rings/jsons --save-dir my_datasets/color_rings/txts --classes "cat,dogs"
    """
    parser = argparse.ArgumentParser(description='json convert to txt params')
    parser.add_argument('--json-dir', type=str,default='D:/ultralytics-main/data/json', help='json path dir')#这个地方换成自己的json的文件夹
    parser.add_argument('--save-dir', type=str,default='D:/ultralytics-main/data/txt' ,help='txt save dir')#这个地方换成自己的txt的文件夹
    parser.add_argument('--classes', type=str, default='ccc,ccc1',help='classes')#这个地方换成自己的类别,“类别1,类别2”
    args = parser.parse_args()
    json_dir = args.json_dir
    save_dir = args.save_dir
    classes = args.classes
    convert_label_json(json_dir, save_dir, classes)

(2)划分数据集
在当前文件夹下运行,记得更换一下下面的路径

# 将图片和标注数据按比例切分为 训练集和测试集
import shutil
import random
import os
import argparse
 
 
# 检查文件夹是否存在
def mkdir(path):
    if not os.path.exists(path):
        os.makedirs(path)
 
def main(image_dir, txt_dir, save_dir):
    # 创建文件夹
    mkdir(save_dir)
    images_dir = os.path.join(save_dir, 'images')
    labels_dir = os.path.join(save_dir, 'labels')
 
    img_train_path = os.path.join(images_dir, 'train')
    img_test_path = os.path.join(images_dir, 'test')
    img_val_path = os.path.join(images_dir, 'val')
 
    label_train_path = os.path.join(labels_dir, 'train')
    label_test_path = os.path.join(labels_dir, 'test')
    label_val_path = os.path.join(labels_dir, 'val')
 
    mkdir(images_dir);
    mkdir(labels_dir);
    mkdir(img_train_path);
    mkdir(img_test_path);
    mkdir(img_val_path);
    mkdir(label_train_path);
    mkdir(label_test_path);
    mkdir(label_val_path);
 
    # 数据集划分比例,训练集75%,验证集15%,测试集15%,按需修改
    train_percent = 0.8
    val_percent = 0.1
    test_percent = 0.1
 
    total_txt = os.listdir(txt_dir)
    num_txt = len(total_txt)
    list_all_txt = range(num_txt)  # 范围 range(0, num)
 
    num_train = int(num_txt * train_percent)
    num_val = int(num_txt * val_percent)
    num_test = num_txt - num_train - num_val
 
    train = random.sample(list_all_txt, num_train)
    # 在全部数据集中取出train
    val_test = [i for i in list_all_txt if not i in train]
    # 再从val_test取出num_val个元素,val_test剩下的元素就是test
    val = random.sample(val_test, num_val)
 
    print("训练集数目:{}, 验证集数目:{},测试集数目:{}".format(len(train), len(val), len(val_test) - len(val)))
    for i in list_all_txt:
        name = total_txt[i][:-4]
 
        srcImage = os.path.join(image_dir, name + '.jpg')
        srcLabel = os.path.join(txt_dir, name + '.txt')
 
        if i in train:
            dst_train_Image = os.path.join(img_train_path, name + '.jpg')
            dst_train_Label = os.path.join(label_train_path, name + '.txt')
            shutil.copyfile(srcImage, dst_train_Image)
            shutil.copyfile(srcLabel, dst_train_Label)
        elif i in val:
            dst_val_Image = os.path.join(img_val_path, name + '.jpg')
            dst_val_Label = os.path.join(label_val_path, name + '.txt')
            shutil.copyfile(srcImage, dst_val_Image)
            shutil.copyfile(srcLabel, dst_val_Label)
        else:
            dst_test_Image = os.path.join(img_test_path, name + '.jpg')
            dst_test_Label = os.path.join(label_test_path, name + '.txt')
            shutil.copyfile(srcImage, dst_test_Image)
            shutil.copyfile(srcLabel, dst_test_Label)
 
 
if __name__ == '__main__':
    """
    python split_datasets.py --image-dir my_datasets/color_rings/imgs --txt-dir my_datasets/color_rings/txts --save-dir my_datasets/color_rings/train_data
    """
    parser = argparse.ArgumentParser(description='split datasets to train,val,test params')
    parser.add_argument('--image-dir', type=str,default='D:/ultralytics-main/data', help='image path dir')#换成自己的images文件夹
    parser.add_argument('--txt-dir', type=str,default='D:/ultralytics-main/data/txt' , help='txt path dir')#换成自己的txt文件夹
    parser.add_argument('--save-dir', default='D:/ultralytics-main/data/split',type=str, help='save dir')#换成自己的split文件夹
    args = parser.parse_args()
    image_dir = args.image_dir
    txt_dir = args.txt_dir
    save_dir = args.save_dir
 
    main(image_dir, txt_dir, save_dir)
    

(3)修改数据集的配置文件ultralytics-main\ultralytics\cfg\datasets\coco128-seg.yaml ,换上自己数据集的路径以及标签名称,和目标检测一样;

修改model的配置文件ultralytics-main\ultralytics\cfg\models\v8\yolov8-seg.yaml 下的类别,将80类换成自己的类别个数。

这里可以看一下
https://blog.csdn.net/qq_51539952/article/details/136361107

(4)训练
记得更新路径

from ultralytics import YOLO

# load a model
model = YOLO(r"F:\detection\fenge\ultralytics-main\ultralytics\cfg\models\v8/yolov8-seg.yaml")#换成自己的配置
model = YOLO(r"F:\detection\ultralytics-main/yolov8n.pt")
# Train the model#语义分割换成yolov8n-seg.pt
model.train(data=r'F:\detection\fenge\ultralytics-main\ultralytics\cfg\datasets/coco128-seg.yaml', epochs=500,
            imgsz=640)#换成自己的配置
        

(5)预测
记得更新路径

from ultralytics import YOLO
from PIL import Image
from ultralytics import YOLO

# Load a model
model = YOLO(r"F:\detection\fenge\ultralytics-main/runs\detect\train7/weights/best.pt")  # load an official model
# model = YOLO('path/to/best.pt')  # load a custom model#自己训练的最优的模型参数

# Predict with the model
results = model(
    r"F:\detection\fenge\ultralytics-main/25.jpg")  # predict on an image#测试图

# Show the results
for r in results:
    im_array = r.plot()  # plot a BGR numpy array of predictions
    im = Image.fromarray(im_array[..., ::-1])  # RGB PIL image
    im.show()  # show image

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值