中值定理应用

一、涉及函数的中值定理

设f(x)在[a,b]上连续,则

定理1(有界与最值定理)

m ≤ f(x) ≤ M,其中m,M分别为f(x)在[a,b]上的最小值与最大值

定理2(介值定理)

当m ≤ \mu ≤ M,存在\xi∈[a,b],使得f(\xi)=0;

定理3(零点定理)

当f(a)·f(b)<0(函数值异号),存在\xi∈(a,b),使得f(\xi)=0

注:推广的零点定理:若f(x)在(a,b)内连续,\lim_{x\rightarrow a^{+}} f(x) = \alpha,\lim_{x\rightarrow b^{-}}f (x) = \beta,且\alpha·\beta<0,则f(x)=0在(a,b)内至少有一个根,这里的a,b,\alpha\beta可以是有限数,也可以是无穷大。

二、涉及导数(微分)的中值定理

定理4(费马定理)

设f(x)在点x_{0}处满足①可导,②取到极值,则{f}'(x_{0})=0

定理5(导数零点定理)

设f(x)在[a,b]上可导,当{f_{+}}'(a) · {f_{-}}'(b)<0,存在\xi∈(a,b),使得{f}'(\xi)=0

定理6(罗尔定理)

设f(x)满足①在[a,b]上连续,②在(a,b)内可导,③f(a)=f(b),则存在\xi∈(a,b),使得{f}'(\xi)=0

*在考验数学中关键在于找到这两个函数值相同的点,在进行罗尔定理

【注1】推广的罗尔定理

设f(x)在(a,b)内可导,\lim_{x\rightarrow a^{+}} f(x) = \lim_{x\rightarrow b^{-}} f(x) = A,则在(a,b)内至少存在一点\xi,使得{f}'(\xi)=0,其中区间(a,b)可以是有限区间也可以是无穷区间,A可以是有限数也可以是无穷大

【注2】罗尔定理的使用往往需要构造辅助函数

①见到{f}(x){f}'(x),则令F(x) = f^{2}(x)

②见到\left [{f}'x \right ]^{2} + {f}(x){f}''(x),则令F(x) = {f}(x){f}'(x)

③见到{f}'(x) + {f}(x){\varphi }'(x),令F(x) = {f}(x)e^{\varphi (x)}

④见到{f}'(x)x - {f}(x),x≠0,则令F(x) = \frac{f(x)}{x}.

定理7(拉格朗日中值定理)

设f(x)满足①在[a,b]上连续,②在(a,b)内可导,则存在\xi∈(a,b),使得

                                                       f(a) - f(b) = {f}'(\xi)(b-a)

几何意义:过两区间端点的直线的斜率可以在f(x)在区间内至少找得到一点,使得其斜率等于直线的斜率

注:题中见到 f(a) - f(b) 或 f 和 {f}' 的关系,一般联想到拉格朗日中值定理

定理8(柯西中值定理)

设f(x),g(x)满足①在[a,b]上连续,②在(a,b)内可导,③{g}'(x)≠0,则存在\xi∈(a,b),

使得

                \frac{f(b)-f(a)}{g(b)-g(a)}=\frac{​{f}'(\xi )}{​{g}'(\xi )}

注:在考试中,往往考察一个具体函数,一个抽象函数

定理9(泰勒公式)

(1)带拉格朗日余项的n阶泰勒公式

设f(x)在点x_{0}的某个领域内n+1阶导数存在,则对该领域内的任意点x,有

{f}(x)={f}(x_{0})+{f}'(x_{0})(x-x_{0})+\cdots +\frac{1}{n!}f^{(n)}(x_{0})(x-x_{0})^{n}+\frac{f^{(n+1)}(\xi )}{(n+1)!}(x-x_{0})^{n+1}

注:此公式适用于区间[a,b],常在证明题中使用,如证不等式,中值等式等

(2)带佩亚诺余项的n阶泰勒公式

设f(x)在点x_{0}处n阶可导,则存在x_{0}的一个领域,对于该领域内的任意一点x,有

{f}(x)={f}(x_{0})+{f}'(x_{0})(x-x_{0})+\cdots +\frac{1}{n!}f^{(n)}(x_{0})(x-x_{0})^{n}+o((x-x_{0})^{n})

注:此公式仅适用于点x = x_{0}及其领域,常用于研究点x = x_{0}处的某些结论,如求极限、判定无穷小的阶数、判定极值等

【注】几个重要的麦克劳林展开式

当x = x_{0}时的泰勒公式称为麦克劳林公式

e^{x}=1+x+\frac{1}{2!}x^{2}+\cdots +\frac{1}{n!}x^{n}+o(x^{n})

sinx=x-\frac{x^{3}}{3!}+\cdots +(-1)^{n}\frac{x^{2n+1}}{(2n+1)!}+o(x^{2n+1})

cosx=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots +(-1)^{n}\frac{x^{2n}}{(2n)!}+o(x^{2n})

\frac{1}{1-x}=1+x+x^{2}+\cdots +x^{n}+o(x^{n})

\frac{1}{1+x}=1-x+x^{2}-\cdots +(-1)^{n}x^{n}+o(x^{n})

ln(1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\cdots +(-1)^{n-1}\frac{x^{n}}{n}+o(x^{n})

(1+x)^{\alpha }=1+\alpha x+\frac{\alpha (\alpha -1)}{2!}x^{2}+\cdots +\frac{\alpha (\alpha -1)\cdots (\alpha -n+1)}{n!}x^{n}+o(x^{n})

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值