一、涉及函数的中值定理
设f(x)在[a,b]上连续,则
定理1(有界与最值定理)
m ≤ f(x) ≤ M,其中m,M分别为f(x)在[a,b]上的最小值与最大值
定理2(介值定理)
当m ≤ ≤ M,存在
∈[a,b],使得f(
)=0;
定理3(零点定理)
当f(a)·f(b)<0(函数值异号),存在∈(a,b),使得f(
)=0
注:推广的零点定理:若f(x)在(a,b)内连续, f(x) =
,
f (x) =
,且
·
<0,则f(x)=0在(a,b)内至少有一个根,这里的a,b,
,
可以是有限数,也可以是无穷大。
二、涉及导数(微分)的中值定理
定理4(费马定理)
设f(x)在点处满足①可导,②取到极值,则
(
)=0
定理5(导数零点定理)
设f(x)在[a,b]上可导,当(a) ·
(b)<0,存在
∈(a,b),使得
(
)=0
定理6(罗尔定理)
设f(x)满足①在[a,b]上连续,②在(a,b)内可导,③f(a)=f(b),则存在∈(a,b),使得
(
)=0
*在考验数学中关键在于找到这两个函数值相同的点,在进行罗尔定理
【注1】推广的罗尔定理
设f(x)在(a,b)内可导, f(x) =
f(x) = A,则在(a,b)内至少存在一点
,使得
(
)=0,其中区间(a,b)可以是有限区间也可以是无穷区间,A可以是有限数也可以是无穷大
【注2】罗尔定理的使用往往需要构造辅助函数
①见到
,则令F(x) =
;
②见到
+
,则令F(x) =
;
③见到
+
,令F(x) =
;
④见到
-
,x≠0,则令F(x) =
.
定理7(拉格朗日中值定理)
设f(x)满足①在[a,b]上连续,②在(a,b)内可导,则存在∈(a,b),使得
f(a) - f(b) = (
)(b-a)
几何意义:过两区间端点的直线的斜率可以在f(x)在区间内至少找得到一点,使得其斜率等于直线的斜率
注:题中见到 f(a) - f(b) 或 f 和 的关系,一般联想到拉格朗日中值定理
定理8(柯西中值定理)
设f(x),g(x)满足①在[a,b]上连续,②在(a,b)内可导,③≠0,则存在
∈(a,b),
使得
注:在考试中,往往考察一个具体函数,一个抽象函数
定理9(泰勒公式)
(1)带拉格朗日余项的n阶泰勒公式
设f(x)在点的某个领域内n+1阶导数存在,则对该领域内的任意点x,有
注:此公式适用于区间[a,b],常在证明题中使用,如证不等式,中值等式等
(2)带佩亚诺余项的n阶泰勒公式
设f(x)在点处n阶可导,则存在
的一个领域,对于该领域内的任意一点x,有
注:此公式仅适用于点x = 及其领域,常用于研究点x =
处的某些结论,如求极限、判定无穷小的阶数、判定极值等
【注】几个重要的麦克劳林展开式
当x = 时的泰勒公式称为麦克劳林公式