目录:点我
思维导图下载:点我
一、中值定理
设 f ( x ) f(x) f(x) 在 [ a , b ] [a,b] [a,b] 上连续,则:
1. 有界与最值定理
m ≤ f ( x ) ≤ M m\le f(x)\le M m≤f(x)≤M ,其中 m , M m,M m,M 分别为 f ( x ) f(x) f(x) 在 [ a , b ] [a,b] [a,b] 上的最小值与最大值。
2. 介值定理
当 m ≤ μ ≤ M m\le \mu\le M m≤μ≤M 时,存在 ξ ∈ [ a , b ] \xi\in[a,b] ξ∈[a,b] ,使得 f ( ξ ) = μ f(\xi)=\mu f(ξ)=μ 。
3. 平均值定理
当 a < x 1 < x 2 < ⋯ < x n < b a<x_1<x_2<\cdots<x_n<b a<x1<x2<⋯<xn<b 时,在 [ x 1 , x n ] [x_1,x_n] [x1,xn] 内至少存在一点 ξ \xi ξ ,使: f ( ξ ) = f ( x 1 ) + f ( x 2 ) + ⋯ + f ( x n ) n f(\xi)=\frac{f(x_1)+f(x_2)+\cdots+f(x_n)}{n} f(ξ)=nf(x1)+f(x2)+⋯+f(xn)
4. 零点定理
当 f ( a ) ⋅ f ( b ) < 0 f(a)\cdot f(b)<0 f(a)⋅f(b)<0 时,存在 ξ ∈ ( a , b ) \xi \in (a,b) ξ∈(a,b) ,使得 f ( ξ ) = 0 f(\xi)=0 f(ξ)=0 。
5. 费马定理
设 f ( x ) f(x) f(x) 在 x 0 x_0 x0 点处满足 ① 可导,② 取极值,则 f ′ ( x 0 ) = 0 f'(x_0)=0 f′(x0)=0 。
6. 罗尔定理
设 f ( x ) f(x) f(x) 满足 ① [ a , b ] [a,b] [a,b] 上连续,② [ a , b ] [a,b] [a,b] 内可导,③ f ( a ) = f ( b ) f(a)=f(b) f(a)=f(b) ,则存在 ξ ∈ ( a , b ) \xi\in(a,b) ξ∈(a,b) ,使得 f ′ ( ξ ) = 0 f'(\xi)=0 f′(ξ)=0 。
7. 拉格朗日中值定理
设 f ( x ) f(x) f(x) 满足 ① [ a , b ] [a,b] [a,b] 上连续,② ( a , b ) (a,b) (a,b) 内可导,则存在 ξ ∈ ( a , b ) \xi\in(a,b) ξ∈(a,b) ,使得: f ( b ) − f ( a ) = f ′ ( ξ ) ( b − a ) f(b)-f(a)=f'(\xi)(b-a) f(b)−f(a)=f′(ξ)(b−a) 或者写成: f ′ ( ξ ) = f ( b ) − f ( a ) b − a f'(\xi)=\frac{f(b)-f(a)}{b-a} f′(ξ)=b−af(b)−f(a)
8. 柯西中值定理
设 f ( x ) , g ( x ) f(x), g(x) f(x),g(x) 满足 ① [ a , b ] [a,b] [a,b] 上连续,② ( a , b ) (a,b) (a,b) 内可导,③ g ′ ( x ) ≠ 0 g'(x)\ne0 g′(x)=0 ,则存在 ξ ∈ ( a , b ) \xi\in(a,b) ξ∈(a,b) ,使得: f ( b ) − f ( a ) g ( b ) − g ( a ) = f ′ ( ξ ) g ′ ( ξ ) \frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f'(\xi)}{g'(\xi)} g(b)−g(a)f(b)−f(a)=g′(ξ)f′(ξ)
9. 泰勒公式
1)带拉格朗日余项的 n 阶泰勒公式:
设 f ( x ) f(x) f(x) 在点 x 0 x_0 x0 的某个邻域内 n + 1 n+1 n+1 阶导数存在,则对该邻域内的任一点 x x x ,有: f ( x ) = f ( x n ) + f ′ ( x 0 ) ( x − x 0 ) + ⋯ + 1 n ! f ( n ) ( x 0 ) ( x − x 0 ) n + f ( n + 1 ) ( ξ ) ( n + 1 ) ! ( x − x 0 ) n + 1 f(x)=f(x_n)+f'(x_0)(x-x_0)+\cdots+\frac{1}{n!}f^{(n)}(x_0)(x-x_0)^n+\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1} f(x)=f(xn)+f′(x0)(x−x0)+⋯+n!1f(n)(x0)(x−x0)n+(n+1)!f(n+1)(ξ)(x−x0)n+1 其中 ξ \xi ξ 介于 x , x 0 x,x_0 x,x0 之间。
2)带佩亚诺余项的 n 阶泰勒公式:
设 f ( x ) f(x) f(x) 在点 x 0 x_0 x0 处 n n n 阶可导,则存在 x 0 x_0 x0 的一个邻域,对于该邻域中的任一点 x x x ,有: f ( x ) = f ( x n ) + f ′ ( x 0 ) ( x − x 0 ) + 1 2 ! f ′ ′ ( x 0 ) ( x − x 0 ) 2 + ⋯ + 1 n ! f ( n ) ( x 0 ) ( x − x 0 ) n + o ( ( x − x 0 ) n ) f(x)=f(x_n)+f'(x_0)(x-x_0)+\frac{1}{2!}f^{''}(x_0)(x-x_0)^2+\cdots+\frac{1}{n!}f^{(n)}(x_0)(x-x_0)^n+o((x-x_0)^n) f(x)=f(xn)+f′(x0)(x−x0)+2!1f′′(x0)(x−x0)2+⋯+n!1f(n)(x0)(x−x0)n+o((x−x0)n)
10. 积分中值定理
设 f ( x ) f(x) f(x) 在 [ a , b ] [a,b] [a,b] 上连续,则存在 ξ ∈ [ a , b ] \xi\in[a,b] ξ∈[a,b] ,使得: ∫ a b f ( x ) d x = f ( ξ ) ( b − a ) \int_{a}^{b}f(x)dx=f(\xi)(b-a) ∫abf(x)dx=f(ξ)(b−a)
11. 二重积分中值定理
设 f ( x , y ) f(x,y) f(x,y) 在 D D D 上连续,则存在 μ , ξ ∈ D \mu,\xi\in D μ,ξ∈D ,使得: ∬ D f ( x , y ) d σ = f ( μ , ξ ) ⋅ σ \iint\limits_{D}^{}f(x,y)d\sigma=f(\mu,\xi)\cdot\sigma D∬f(x,y)dσ=f(μ,ξ)⋅σ