中值定理

目录:点我

思维导图下载:点我

中值定理

一、中值定理

f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 上连续,则:

1. 有界与最值定理

m ≤ f ( x ) ≤ M m\le f(x)\le M mf(x)M ,其中 m , M m,M m,M 分别为 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 上的最小值与最大值。

2. 介值定理

m ≤ μ ≤ M m\le \mu\le M mμM 时,存在 ξ ∈ [ a , b ] \xi\in[a,b] ξ[a,b] ,使得 f ( ξ ) = μ f(\xi)=\mu f(ξ)=μ

3. 平均值定理

a < x 1 < x 2 < ⋯ < x n < b a<x_1<x_2<\cdots<x_n<b a<x1<x2<<xn<b 时,在 [ x 1 , x n ] [x_1,x_n] [x1,xn] 内至少存在一点 ξ \xi ξ ,使: f ( ξ ) = f ( x 1 ) + f ( x 2 ) + ⋯ + f ( x n ) n f(\xi)=\frac{f(x_1)+f(x_2)+\cdots+f(x_n)}{n} f(ξ)=nf(x1)+f(x2)++f(xn)

4. 零点定理

f ( a ) ⋅ f ( b ) < 0 f(a)\cdot f(b)<0 f(a)f(b)<0 时,存在 ξ ∈ ( a , b ) \xi \in (a,b) ξ(a,b) ,使得 f ( ξ ) = 0 f(\xi)=0 f(ξ)=0

5. 费马定理

f ( x ) f(x) f(x) x 0 x_0 x0 点处满足 ① 可导,② 取极值,则 f ′ ( x 0 ) = 0 f'(x_0)=0 f(x0)=0

6. 罗尔定理

f ( x ) f(x) f(x) 满足 ① [ a , b ] [a,b] [a,b] 上连续,② [ a , b ] [a,b] [a,b] 内可导,③ f ( a ) = f ( b ) f(a)=f(b) f(a)=f(b) ,则存在 ξ ∈ ( a , b ) \xi\in(a,b) ξ(a,b) ,使得 f ′ ( ξ ) = 0 f'(\xi)=0 f(ξ)=0

7. 拉格朗日中值定理

f ( x ) f(x) f(x) 满足 ① [ a , b ] [a,b] [a,b] 上连续,② ( a , b ) (a,b) (a,b) 内可导,则存在 ξ ∈ ( a , b ) \xi\in(a,b) ξ(a,b) ,使得: f ( b ) − f ( a ) = f ′ ( ξ ) ( b − a ) f(b)-f(a)=f'(\xi)(b-a) f(b)f(a)=f(ξ)(ba) 或者写成: f ′ ( ξ ) = f ( b ) − f ( a ) b − a f'(\xi)=\frac{f(b)-f(a)}{b-a} f(ξ)=baf(b)f(a)

8. 柯西中值定理

f ( x ) , g ( x ) f(x), g(x) f(x),g(x) 满足 ① [ a , b ] [a,b] [a,b] 上连续,② ( a , b ) (a,b) (a,b) 内可导,③ g ′ ( x ) ≠ 0 g'(x)\ne0 g(x)=0 ,则存在 ξ ∈ ( a , b ) \xi\in(a,b) ξ(a,b) ,使得: f ( b ) − f ( a ) g ( b ) − g ( a ) = f ′ ( ξ ) g ′ ( ξ ) \frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f'(\xi)}{g'(\xi)} g(b)g(a)f(b)f(a)=g(ξ)f(ξ)

9. 泰勒公式

1)带拉格朗日余项的 n 阶泰勒公式:

f ( x ) f(x) f(x) 在点 x 0 x_0 x0 的某个邻域内 n + 1 n+1 n+1 阶导数存在,则对该邻域内的任一点 x x x ,有: f ( x ) = f ( x n ) + f ′ ( x 0 ) ( x − x 0 ) + ⋯ + 1 n ! f ( n ) ( x 0 ) ( x − x 0 ) n + f ( n + 1 ) ( ξ ) ( n + 1 ) ! ( x − x 0 ) n + 1 f(x)=f(x_n)+f'(x_0)(x-x_0)+\cdots+\frac{1}{n!}f^{(n)}(x_0)(x-x_0)^n+\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1} f(x)=f(xn)+f(x0)(xx0)++n!1f(n)(x0)(xx0)n+(n+1)!f(n+1)(ξ)(xx0)n+1 其中 ξ \xi ξ 介于 x , x 0 x,x_0 x,x0 之间。

2)带佩亚诺余项的 n 阶泰勒公式:

f ( x ) f(x) f(x) 在点 x 0 x_0 x0 n n n 阶可导,则存在 x 0 x_0 x0 的一个邻域,对于该邻域中的任一点 x x x ,有: f ( x ) = f ( x n ) + f ′ ( x 0 ) ( x − x 0 ) + 1 2 ! f ′ ′ ( x 0 ) ( x − x 0 ) 2 + ⋯ + 1 n ! f ( n ) ( x 0 ) ( x − x 0 ) n + o ( ( x − x 0 ) n ) f(x)=f(x_n)+f'(x_0)(x-x_0)+\frac{1}{2!}f^{''}(x_0)(x-x_0)^2+\cdots+\frac{1}{n!}f^{(n)}(x_0)(x-x_0)^n+o((x-x_0)^n) f(x)=f(xn)+f(x0)(xx0)+2!1f(x0)(xx0)2++n!1f(n)(x0)(xx0)n+o((xx0)n)

10. 积分中值定理

f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 上连续,则存在 ξ ∈ [ a , b ] \xi\in[a,b] ξ[a,b] ,使得: ∫ a b f ( x ) d x = f ( ξ ) ( b − a ) \int_{a}^{b}f(x)dx=f(\xi)(b-a) abf(x)dx=f(ξ)(ba)

11. 二重积分中值定理

f ( x , y ) f(x,y) f(x,y) D D D 上连续,则存在 μ , ξ ∈ D \mu,\xi\in D μ,ξD ,使得: ∬ D f ( x , y ) d σ = f ( μ , ξ ) ⋅ σ \iint\limits_{D}^{}f(x,y)d\sigma=f(\mu,\xi)\cdot\sigma Df(x,y)dσ=f(μ,ξ)σ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BeZer0

打赏一杯奶茶支持一下作者吧~~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值