模型概述
- 全称:GLM (General Language Model) for Chat, 6 Billion Parameters
- 开发团队:清华大学 KEG 实验室和智谱 AI
- 参数量:60亿(6B)
- 架构:基于 Transformer 架构,具体实现上参考了 OpenAI 的 GPT 和 Google's BERT 结构,并结合了 GLM (General Language Model) 的技术特点
- 地址:
设计特点
- 双语能力:ChatGLM-6B 支持中英双语对话生成,这使得它在中英文混合环境下也能很好地工作。
- 高效推理:采用了量化技术,可以在保证模型性能的同时,显著降低推理时的计算资源需求。
- 大规模预训练:模型在大规模中英文语料上进行了预训练,具备良好的语言理解和生成能力。
技术优势
- 更强大的基础模型: ChatGLM3-6B 的基础模型 ChatGLM3-6B-Base 采用了更多样的训练数据、更充分的训练步数和更合理的训练策略。在语义、数学、推理、代码、知识等不同角度的数据集上测评显示,* ChatGLM3-6B-Base 具有在 10B 以下的基础模型中最强的性能*。
- 更完整的功能支持: ChatGLM3-6B 采用了全新设计的 Prompt 格式 ,除正常的多轮对话外。同时原生支持工具调用(Function Call)、代码执行(Code Interpreter)和 Agent 任务等复杂场景。
- 更全面的开源序列: 除了对话模型 ChatGLM3-6B 外,还开源了基础模型 ChatGLM3-6B-Base 、长文本对话模型 ChatGLM3-6B-32K。
应用场景
- 智能客服:为企业提供智能客服解决方案,能够自动应答用户问题,提升客户服务效率。
- 教育辅导:在教育领域中充当虚拟助教,帮助学生解答问题,提供学习资源。
- 内容创作:辅助内容创作者进行文章、剧本等文案的撰写。
- 翻译服务:提供高质量的中英文翻译,满足跨语言沟通需求。