【不确定因素关联关系建模】

利用四个不确定因素的耦合关联关系进行建模,同时利用 Stackelberg 博弈(见微经笔记 P12)来解决 IT 用户和数据中心运营商之间的利益分配问题。在博弈的过程中,IT 用户 i i i 充当跟随者,各 t t t 时段的决策变量是负荷削减量 P ~ D R , i , t {\widetilde{P}}_{DR,i,t} P DR,i,t。运营商扮演领导者,其决策变量是给予 IT 用户 i i i 的激励价格 r ~ i {\widetilde{r}}_i r i

1. 效用函数

IT 用户 i i i t t t 时段的效用函数以 O i , t O_{i,t} Oi,t 表示,定义为:
O i , t = r i ~ P ~ D R , i , t − w i ( P ~ D R , i , t P ~ D R , i , t max ) α i P ~ D R , i , t max O_{i,t} = \widetilde{r_i}{\widetilde{P}}_{DR,i,t} - w_i \left( \frac{{\widetilde{P}}_{DR,i,t}}{{\widetilde{P}}_{DR,i,t}^{\text{max}}} \right)^{\alpha_i} {\widetilde{P}}_{DR,i,t}^{\text{max}} Oi,t=ri P DR,i,twi(P DR,i,tmaxP DR,i,t)αiP DR,i,tmax
上式中,左项是 IT 用户 i i i t t t 时间段从数据中心运营商处获得的激励大小;右式的第二项表示由功率削减所造成的不变成本; w i ( P ~ D R , i , t P ~ D R , i , t max ) α i P ~ D R , i , t max w_i \left( \frac{{\widetilde{P}}_{DR,i,t}}{{\widetilde{P}}_{DR,i,t}^{\text{max}}} \right)^{\alpha_i} {\widetilde{P}}_{DR,i,t}^{\text{max}} wi(P DR,i,tmaxP DR,i,t)αiP DR,i,tmax 表示成本和削减能力、削减量在削减能力中的占比有关; w i w_i wi α i \alpha_i αi 分别表示 IT 用户 i i i 削减功率的单位损失和敏感系数(其中 α i ≥ 2 \alpha_i \geq 2 αi2)。

与 IT 用户 i i i 博弈,数据中心运营商(领导者)在 t t t 时段的效用函数为 U i , t U_{i,t} Ui,t,定义如下:
U i , t = z ~ P ~ D R , i , t − r ~ i P ~ D R , i , t U_{i,t} = \widetilde{z}{\widetilde{P}}_{DR,i,t} - {\widetilde{r}}_i {\widetilde{P}}_{DR,i,t} Ui,t=z P DR,i,tr iP DR,i,t

2. 决策变量的最优解

逆向归纳法可以推算出决策变量最优解 r ~ i {\widetilde{r}}_i r i P ~ D R , i , t {\widetilde{P}}_{DR,i,t} P DR,i,t 的解析式。为了便于推导最优解的解析式,可以引入辅助变量 e i , j e_{i,j} ei,j
e i , j = P ~ D R , i , t P ~ D R , i , t max e_{i,j} = \frac{{\widetilde{P}}_{DR,i,t}}{{\widetilde{P}}_{DR,i,t}^{\text{max}}} ei,j=P DR,i,tmaxP DR,i,t
再对 O i , j O_{i,j} Oi,j e i , j e_{i,j} ei,j 的一次偏导,可得:
∂ O i , j ∂ e i , j = ( r ~ i − α i w i ( e i , t ) α i − 1 ) P ~ D R , i , t max \frac{\partial O_{i,j}}{\partial e_{i,j}} = \left( {\widetilde{r}}_i - \alpha_i w_i \left( e_{i,t} \right)^{\alpha_i - 1} \right) {\widetilde{P}}_{DR,i,t}^{\text{max}} ei,jOi,j=(r iαiwi(ei,t)αi1)P DR,i,tmax
令上式等于 0 0 0,可得:
e i , j = ( r ~ i w i α i ) 1 α i − 1 e_{i,j} = \left( \frac{{\widetilde{r}}_i}{w_i \alpha_i} \right)^{\frac{1}{\alpha_i - 1}} ei,j=(wiαir i)αi11
将上式带入后,求 U i , t U_{i,t} Ui,t 关于 r ~ i {\widetilde{r}}_i r i 的一次偏导,令其等于 0 0 0 可得到:
∂ U i , t ∂ r ~ i = z ~ − α i r ~ i w i α i ( α i − 1 ) ( r ~ i w i α i ) 1 α i − 1 − 1 P ~ D R , i , t max = 0 \frac{\partial U_{i,t}}{\partial {\widetilde{r}}_i} = \frac{\widetilde{z} - \alpha_i {\widetilde{r}}_i}{w_i \alpha_i (\alpha_i - 1)} \left( \frac{{\widetilde{r}}_i}{w_i \alpha_i} \right)^{\frac{1}{\alpha_i - 1} - 1} {\widetilde{P}}_{DR,i,t}^{\text{max}} = 0 r iUi,t=wiαi(αi1)z αir i(wiαir i)αi111P DR,i,tmax=0
此时我们可以得到 r ~ i = z ~ α i {\widetilde{r}}_i = \frac{\widetilde{z}}{\alpha_i} r i=αiz ,我们很容易知道两个边界点是没有意义的,因此该解为最优解。

接下来我们把这个解代回,可以得到:
P ~ D R , i , t = ( z ~ α i 2 w i ) 1 α i − 1 P ~ D R , i , t max {\widetilde{P}}_{DR,i,t} = \left( \frac{\widetilde{z}}{{\alpha_i}^2 w_i} \right)^{\frac{1}{\alpha_i - 1}} {\widetilde{P}}_{DR,i,t}^{\text{max}} P DR,i,t=(αi2wiz )αi11P DR,i,tmax
为了确保 P ~ D R , i , t {\widetilde{P}}_{DR,i,t} P DR,i,t 的物理意义成立,需要判断 z ~ \widetilde{z} z ( α i ) 2 w i {(\alpha_i)}^2 w_i (αi)2wi 的大小关系。

3. 削减量与关系

  1. 如果 z ~ ≤ ( α i ) 2 w i \widetilde{z} \le \left( \alpha_i \right)^2 w_i z (αi)2wi,此时削减量一直在 P ~ D R , i , t max {\widetilde{P}}_{DR,i,t}^{\text{max}} P DR,i,tmax 范围之内:
    最优 r ~ i = z ~ α i {\widetilde{r}}_i = \frac{\widetilde{z}}{\alpha_i} r i=αiz
    最优 P ~ D R , i , t = ( z ~ α i 2 w i ) 1 α i − 1 P ~ D R , i , t max {\widetilde{P}}_{DR,i,t} = \left( \frac{\widetilde{z}}{{\alpha_i}^2 w_i} \right)^{\frac{1}{\alpha_i - 1}} {\widetilde{P}}_{DR,i,t}^{\text{max}} P DR,i,t=(αi2wiz )αi11P DR,i,tmax

  2. 如果 z ~ > α i 2 w i \widetilde{z} > \alpha_i^2 w_i z >αi2wi,此时削减能力前面的系数会大于 1 1 1,超过自身负荷削减能力。因此虽然数学上成立,但物理意义上不存在。由:
    e i , j = ( r ~ i w i α i ) 1 α i − 1 < 1 e_{i,j} = \left( \frac{{\widetilde{r}}_i}{w_i \alpha_i} \right)^{\frac{1}{\alpha_i - 1}} < 1 ei,j=(wiαir i)αi11<1
    r ~ i < w i α i {\widetilde{r}}_i < w_i \alpha_i r i<wiαi,此时:
    最优 r ~ i = w i α i {\widetilde{r}}_i = w_i \alpha_i r i=wiαi
    最优 P ~ D R , i , t = P ~ D R , i , t max {\widetilde{P}}_{DR,i,t} = {\widetilde{P}}_{DR,i,t}^{\text{max}} P DR,i,t=P DR,i,tmax

4. 不确定因素取值范围

给定不确定因素 z ~ \widetilde{z} z P ~ D R , i , t max {\widetilde{P}}_{DR,i,t}^{\text{max}} P DR,i,tmax 的范围 [ z − , z + ] [z^-, z^+] [z,z+] [ P ~ D R , i , t max − , P ~ D R , i , t max + ] [{{\widetilde{P}}_{DR,i,t}^{\text{max}}}^-, {{\widetilde{P}}_{DR,i,t}^{\text{max}}}^+] [P DR,i,tmax,P DR,i,tmax+]

  1. 如果 z ~ ≤ ( α i ) 2 w i \widetilde{z} \le \left( \alpha_i \right)^2 w_i z (αi)2wi
    r ~ i ∈ [ z ~ − α i , z ~ + α i ] {\widetilde{r}}_i \in \left[ \frac{{\widetilde{z}}^-}{\alpha_i}, \frac{{\widetilde{z}}^+}{\alpha_i} \right] r i[αiz ,αiz +]
    P ~ D R , i , t ∈ [ ( z ~ ( α i ) 2 w i ) 1 α i − 1 P ~ D R , i , t max − , ( z ~ ( α i ) 2 w i ) 1 α i − 1 P ~ D R , i , t max + ] {\widetilde{P}}_{DR,i,t} \in \left[ \left( \frac{\widetilde{z}}{{(\alpha_i)}^2 w_i} \right)^{\frac{1}{\alpha_i - 1}} {{\widetilde{P}}_{DR,i,t}^{\text{max}}}^-, \left( \frac{\widetilde{z}}{{(\alpha_i)}^2 w_i} \right)^{\frac{1}{\alpha_i - 1}} {{\widetilde{P}}_{DR,i,t}^{\text{max}}}^+ \right] P DR,i,t ((αi)2wiz )αi11P DR,i,tmax,((αi)2wiz )αi11P DR,i,tmax+

  2. 如果 z ~ > ( α i ) 2 w i \widetilde{z} > \left( \alpha_i \right)^2 w_i z >(αi)2wi 同理。

注意,多重不确定因素具有叠加效应,两个不确定因素会共同作用于 P ~ D R , i , t {\widetilde{P}}_{DR,i,t} P DR,i,t,导致取值范围变大。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值