用Python实现朴素贝叶斯垃圾邮箱分类

一、实验目的

通过本实验,旨在使用朴素贝叶斯算法实现垃圾邮箱分类,并能够理解并掌握以下内容:
了解朴素贝叶斯算法的基本原理和应用场景。
学习如何对文本数据进行预处理,包括去除标点符号、转换为小写字母、分词等操作。
理解特征提取的概念,掌握常见的特征提取方法,如词袋模型和TF-IDF。
学会使用Python中的机器学习库(如scikit-learn)来实现朴素贝叶斯分类器。
掌握如何评估分类器的性能,包括准确率、召回率和F1值等指标。
实践使用训练好的分类器对新的未知邮件进行分类预测。
通过完成本实验,将能够应用朴素贝叶斯算法解决文本分类问题,特别是垃圾邮箱分类。这种技术在实际生活中有广泛的应用,可以帮助我们自动过滤垃圾邮件,提高工作和生活的效率。此外,通过实践,你还将加深对机器学习算法和文本处理技术的理解和应用能力,为进一步探索更复杂的机器学习问题打下基础。

二、设备与环境

Jupyter notebook
Python=3.9

三、实验原理

在这里插入图片描述

四、实验内容

步骤1:准备数据集
首先,我们需要准备一个用于训练和测试朴素贝叶斯分类器的数据集。该数据集应包含标记为“垃圾邮件”和“非垃圾邮件”的电子邮件文本,以及它们对应的分类。
步骤2:数据预处理
在训练和测试之前,我们需要对数据进行预处理,以便将其转换为适合朴素贝叶斯算法使用的格式。这包括将文本数据转换为数字格式,去除停用词,进行词干提取等操作。
步骤3:训练模型
使用准备好的训练数据集,我们可以训练朴素贝叶斯分类器。训练过程包括计算“垃圾邮件”和“非垃圾邮件”的先验概率,以及每个单词在每个类别中出现的条件概率。
步骤4:测试模型
测试集是用于评估模型性能的独立数据集。我们将在测试集上测试训练好的朴素贝叶斯分类器,并计算其准确性、召回率、F1得分等指标,以评估其性能。
步骤5:模型应用
在完成训练和测试后,我们可以将训练好的朴素贝叶斯分类器应用于新的未知邮件文本,并根据其内容将其分类为“垃圾邮件”或“非垃圾邮件”。

五、实验结果分析

用朴素贝叶斯算法构建了一个垃圾邮件检测器,并对训练集进行训练和对测试集进行预测,最后计算了预测准确率。由下图可知准确率为0.98,表示该垃圾检测器的效果还是很好地。
在这里插入图片描述

完整代码及注释

数据集见资源~

#需要导入的包
import os
import re
import string
import math
#数据的读入

DATA_DIR = r'D:\D\Download\360安全浏览器下载\enron Email dataset\enron'
target_names = ['ham', 'spam']
def get_data(DATA_DIR):
    subfolders = ['enron%d' % i for i in range(1,7)]
    data = []
    target = []
    for subfolder in subfolders:
        # spam
        spam_files = os.listdir(os.path.join(DATA_DIR, subfolder, 'spam'))
        for spam_file in spam_files:
            with open(os.path.join(DATA_DIR, subfolder, 'spam', spam_file), encoding="latin-1") as f:
                data.append(f.read())
                target.append(1)
        # ham
        ham_files = os.listdir(os.path.join(DATA_DIR, subfolder, 'ham'))
        for ham_file in ham_files:
            with open(os.path.join(DATA_DIR, subfolder, 'ham', ham_file), encoding="latin-1") as f:
                data.append(f.read())
                target.append(0)
    return data, target
 
X, y = get_data(DATA_DIR)#读取数据
#我们读入了所有邮件内容和标签,其中邮件内容存储在data中,标签存储在target当中,“1”表示为垃圾邮件,“0”表示为正常邮件。

 #定义一个类对数据进行预处理
class SpamDetector_1(object):
    """Implementation of Naive Bayes for binary classification"""
    #清除空格
    def clean(self, s):
        translator = str.maketrans("", "", string.punctuation)
        return s.translate(translator)
    #分开每个单词
    def tokenize(self, text):
        text = self.clean(text).lower()
        return re.split("\W+", text)
    #计算某个单词出现的次数
    def get_word_counts(self, words):
        word_counts = {}
        for word in words:
            word_counts[word] = word_counts.get(word, 0.0) + 1.0
        return word_counts

 #在我们开始实际算法之前,我们需要做三件事:计算(对数)类先验,即计算P(垃圾邮件)和P(正常邮件);词汇表(即正常邮件和垃圾邮件中出现的所有单词,方便进行拉普拉斯平滑);垃圾邮件和非垃圾邮件的词频,即给定词在垃圾邮件和非垃圾邮件中出现的次数。
class SpamDetector_2(SpamDetector_1):
    # X:data,Y:target标签(垃圾邮件或正常邮件)
    def fit(self, X, Y):
        self.num_messages = {}
        self.log_class_priors = {}
        self.word_counts = {}
        # 建立一个集合存储所有出现的单词
        self.vocab = set()
        # 统计spam和ham邮件的个数
        self.num_messages['spam'] = sum(1 for label in Y if label == 1)
        self.num_messages['ham'] = sum(1 for label in Y if label == 0)
 
        # 计算先验概率,即所有的邮件中,垃圾邮件和正常邮件所占的比例
        self.log_class_priors['spam'] = math.log(
            self.num_messages['spam'] / (self.num_messages['spam'] + self.num_messages['ham']))
        self.log_class_priors['ham'] = math.log(
            self.num_messages['ham'] / (self.num_messages['spam'] + self.num_messages['ham']))
 
        self.word_counts['spam'] = {}
        self.word_counts['ham'] = {}
 
        for x, y in zip(X, Y):
            c = 'spam' if y == 1 else 'ham'
            # 构建一个字典存储单封邮件中的单词以及其个数
            counts = self.get_word_counts(self.tokenize(x))
            for word, count in counts.items():
                if word not in self.vocab:
                    self.vocab.add(word)#确保self.vocab中含有所有邮件中的单词
                # 下面语句是为了计算垃圾邮件和非垃圾邮件的词频,即给定词在垃圾邮件和非垃圾邮件中出现的次数。
                # c是0或1,垃圾邮件的标签
                if word not in self.word_counts[c]:
                    self.word_counts[c][word] = 0.0
                self.word_counts[c][word] += count
 #可以利用下面的语句进行debug,判断是否运行正确,若正确,log_class_priors of spam应该为-0.6776,log_class_priors of ham应该为-0.7089。
#我们选取了第100封之后的邮件作为训练集,前面一百封邮件作为测试集。
MNB = SpamDetector_2()
# 选取了第100封之后的邮件作为训练集,前面一百封邮件作为测试集
MNB.fit(X[100:], y[100:])

#print("log_class_priors of spam", MNB.log_class_priors['spam']) #-0.6776
#print("log_class_priors of ham", MNB.log_class_priors['ham']) #-0.7089
#定义一个类spamDetector对测试集进行测试,主要的思路是判断lnP(垃圾)+ ,lnP(正常)+进行比较,从而判断是垃圾邮件还是正常邮件
class SpamDetector(SpamDetector_2):
    def predict(self, X):
        result = []
        flag_1 = 0
        # 遍历所有的测试集
        for x in X:
            counts = self.get_word_counts(self.tokenize(x))  # 生成可以记录单词以及该单词出现的次数的字典
            spam_score = 0
            ham_score = 0
            flag_2 = 0
            for word, _ in counts.items():
                if word not in self.vocab: continue
 
                #下面计算P(内容|垃圾邮件)和P(内容|正常邮件),所有的单词都要进行拉普拉斯平滑
                else:
                    # 该单词存在于正常邮件的训练集和垃圾邮件的训练集当中
                    if word in self.word_counts['spam'].keys() and word in self.word_counts['ham'].keys():
                        log_w_given_spam = math.log(
                            (self.word_counts['spam'][word] + 1) / (sum(self.word_counts['spam'].values()) + len(self.vocab)))
                        log_w_given_ham = math.log(
                            (self.word_counts['ham'][word] + 1) / (sum(self.word_counts['ham'].values()) + len(
                                self.vocab)))
                    # 该单词存在于垃圾邮件的训练集当中,但不存在于正常邮件的训练集当中
                    if word in self.word_counts['spam'].keys() and word not in self.word_counts['ham'].keys():
                        log_w_given_spam = math.log(
                            (self.word_counts['spam'][word] + 1) / (sum(self.word_counts['spam'].values()) + len(self.vocab)))
                        log_w_given_ham = math.log( 1 / (sum(self.word_counts['ham'].values()) + len(
                                self.vocab)))
                    # 该单词存在于正常邮件的训练集当中,但不存在于垃圾邮件的训练集当中
                    if word not in self.word_counts['spam'].keys() and word in self.word_counts['ham'].keys():
                        log_w_given_spam = math.log( 1 / (sum(self.word_counts['spam'].values()) + len(self.vocab)))
                        log_w_given_ham = math.log(
                            (self.word_counts['ham'][word] + 1) / (sum(self.word_counts['ham'].values()) + len(
                                self.vocab)))
 
                # 把计算到的P(内容|垃圾邮件)和P(内容|正常邮件)加起来
                spam_score += log_w_given_spam
                ham_score += log_w_given_ham
 
                flag_2 += 1
 
                # 最后,还要把先验加上去,即P(垃圾邮件)和P(正常邮件)
                spam_score += self.log_class_priors['spam']
                ham_score += self.log_class_priors['ham']
 
            # 最后进行预测,如果spam_score > ham_score则标志为1,即垃圾邮件
            if spam_score > ham_score:
                result.append(1)
            else:
                result.append(0)
 
            flag_1 += 1
 
        return result
 
MNB = SpamDetector()
MNB.fit(X[100:], y[100:])
pred = MNB.predict(X[:100])
true = y[:100]
 
accuracy = 0
for i in range(100):
    if pred[i] == true[i]:
        accuracy += 1
print(accuracy) # 0.98
  • 2
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 3
    评论
朴素贝叶斯分类是一种基于贝叶斯定理和特征条件独立假设的分类方法,它可以用于处理文本分类垃圾邮件过滤等问题。下面是一个简单的 Python 实现朴素贝叶斯分类的示例代码: ```python import numpy as np class NaiveBayesClassifier: def __init__(self, alpha=1.0): self.alpha = alpha # 平滑参数,避免零概率问题 self.classes = None # 所有类别 self.class_prior = None # 类别的先验概率 self.feature_count = None # 每个特征在每个类别下出现的次数 self.feature_prob = None # 每个特征在每个类别下的条件概率 def fit(self, X, y): self.classes = np.unique(y) # 获取所有类别 self.class_prior = np.zeros(len(self.classes)) self.feature_count = np.zeros((len(self.classes), X.shape[1])) self.feature_prob = np.zeros((len(self.classes), X.shape[1])) for i, c in enumerate(self.classes): X_c = X[y == c] self.class_prior[i] = (X_c.shape[0] + self.alpha) / (X.shape[0] + self.alpha * len(self.classes)) self.feature_count[i] = np.sum(X_c, axis=0) self.feature_prob[i] = (self.feature_count[i] + self.alpha) / (np.sum(self.feature_count[i]) + self.alpha * X.shape[1]) def predict(self, X): y_pred = [] for x in X: posteriors = [] for i, c in enumerate(self.classes): prior = np.log(self.class_prior[i]) likelihood = np.sum(np.log(self.feature_prob[i]) * x + np.log(1 - self.feature_prob[i]) * (1 - x)) posterior = prior + likelihood posteriors.append(posterior) y_pred.append(self.classes[np.argmax(posteriors)]) return y_pred ``` 上述代码中,`NaiveBayesClassifier` 是一个朴素贝叶斯分类器的类,包括以下几个方法: - `__init__(self, alpha=1.0)`:初始化分类器,`alpha` 是平滑参数。 - `fit(self, X, y)`:训练分类器,其中 `X` 是特征矩阵,`y` 是目标向量。 - `predict(self, X)`:预测分类结果,其中 `X` 是测试数据的特征矩阵。 在训练过程中,分类器首先获取所有类别,然后计算每个类别的先验概率和每个特征在每个类别下出现的次数。接着,分类器计算每个特征在每个类别下的条件概率,最后将其存储在 `feature_prob` 中。在预测过程中,分类器首先计算每个类别的先验概率和每个特征在每个类别下的条件概率的对数,然后将它们相加得到后验概率,最后将后验概率最大的类别作为预测结果。 需要注意的是,这里使用了平滑参数 `alpha`,避免出现零概率问题。`alpha` 的取值可以根据具体的数据集进行调整,一般取值为 1.0。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Unicornlyy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值