论文名称:Force Tracking Control of Lower Extremity Exoskeleton Based on a New Recurrent Neural Network
中文名称:基于一种改进递归神经网络的下肢外骨骼机器人的力跟踪控制
摘要:下肢外骨骼可以增强人体肢体的功能,在许多领域得到了应用。由于外骨骼系统存在动力学模型的不确定性、外界干扰和未知的人机交互力等问题,很难开发出精确的力跟踪控制方法。本文提出了一种基于递归神经网络的控制方法,即归零神经网络(ZNN),以获得精确的力跟踪。在ZNN框架下,采用自适应RBF神经网络(ARBFNN)处理系统的不确定性,设计固定时间收敛扰动观测器对外骨骼电液系统的外部扰动进行估计。利用李雅普诺夫稳定性方法证明了所有闭环信号的收敛性,保证了力的跟踪。给出了该控制方案(ARBFNN-FDO-ZNN)的力跟踪性能,并与基于指数逼近律的滑模控制器(ERL-SMC)进行了对比。该方案具有收敛速度快、跟踪误差峰值小等优点,优于ERL-SMC。最后,通过实验验证了所提控制器解决精确力跟踪控制问题的有效性。
主要图表: