解方程论文【2】。。

目录

求解中子扩散方程特征值问题的深度神经网络方法和软件

求解双曲型方程的半离散卷积神经网络算法

为啥用半离散卷积

StruMNet: 一种融合神经网络和偏微分方程的结构网格生成方法

训练环境

生成的网格如何

为啥要生成网格

 


求解中子扩散方程特征值问题的深度神经网络方法和软件

本文深入探讨了利用深度神经网络求解核工程领域中子扩散特征值问题(NDEP)的方法。文章涵盖了数据驱动和物理驱动两种方法,并介绍了开发的特征值问题求解软件包 AISEA。

1. 引言

  • 介绍了中子扩散方程及其特征值问题在核工程领域的重要性。P3

  • 回顾了传统的数值方法,如有限差分法、有限元法等,并指出其局限性。P3

  • 强调了深度神经网络在求解中子扩散方程方面的优势和潜力。P3

2. 算法设计与实现

2.1 数据驱动

  • DEPINN (数据驱动物理信息神经网络):

    • 结合物理信息神经网络(PINN)和少量观测数据,构建 DEPINN 模型。P3P4

    • 使用先验信息(如理论分析、逻辑推理或实验观测数据)作为数据驱动,确保网络收敛于唯一解,简化模型结构,并加速优化过程。P4

    • 引入区间损失函数,有效处理带噪声的观测数据。P10

2.2 物理驱动

  • IPMNN (反幂法神经网络):

    • 基于反幂法思想,利用神经网络求解最小特征值和相应的特征函数。P5

    • 定义损失函数,表示反幂法中的收敛条件,并通过最小化损失函数逐步近似特征函数。P5

  • GIPMNN (广义反幂法神经网络):

    • 用于求解广义特征值问题,通过添加额外损失项驱使神经网络学习满足等式。P6
  • PC-GIPMNN (物理约束广义反幂法神经网络):

    • 用于求解受界面条件约束的特征值问题,通过引入惩罚项实现界面条件。P6
  • DRM (直接迭代残差损失函数):

    • 针对双群中子扩散方程,提出直接迭代残差损失函数,整合迭代项信息,提高求解精度。P6

3. AISEA 软件包介绍

  • AISEA 是专门针对核反应堆物理开发的中子扩散问题求解软件包。P8

  • 具备数据驱动和物理驱动两种方法,能够应对不同物理工况和几何维度。P9

  • 使用方便,仅需提供采样点、相关系数和计算区域即可。P8

4. 数值算例成果

  • 通过 IAEA 基准例题验证了 DEPINN 模型的有效性和泛化能力。P9

  • 比较了 DEPINN 模型在不同损失函数下的性能,结果表明区间损失函数能够有效降低噪声的影响。P10

  • 通过一维板式反应堆模型验证了 IPMNN、GIPMNN 和 PC-GIPMNN 模型的性能。P11P12

  • 通过二维 IAEA 基准例题验证了 DRM 模型的性能,结果表明直接迭代残差损失函数能够有效提高求解精度。P13

5. 结论与展望

  • 本文提出的深度神经网络方法在求解中子扩散方程特征值问题方面取得了良好的效果。

  • AISEA 软件包为核工程领域提供了一种新的、高效的数值求解工具。

  • 未来可以进一步探索将深度学习方法应用于更复杂的中子输运问题,并研究如何提高物理驱动方法的精度和效率。

图中的“95%CI”表示95%置信区间(Confidence Interval)。置信区间是统计学中的一个概念,用于估计总体参数的范围。具体来说,95%置信区间意味着如果我们重复进行相同的抽样和构建区间过程很多次,那么其中大约95%的区间会包含总体参数的真值。

总结

本文提出的深度神经网络方法和 AISEA 软件包为核工程领域提供了一种新的求解工具,具有广阔的应用前景。

关键词: 神经网络;特征值问题;中子扩散方程;噪声;AISEA

求解双曲型方程的半离散卷积神经网络算法

为啥用半离散卷积

对形如式(1)的双曲守恒律方程,即便初始条件 充分光滑,随着时间的推进其解也可能出现间断,传 统低阶数值算法分辨率较低且依赖于网格,且单纯的 卷积神经网络算法无法较好地求解间断问题。已有 的卷积神经网络与低阶格式耦合的方法仅优化了一 组系数,无法满足双曲守恒律方程间断问题的求解需 求[27] 。鉴于此,通过卷积神经网络对低阶有限体积格 式中的系数分时间层、分区域进行优化,最终通过简 单的欧拉向后格式实现时间方向上的推进,提出半离 数 卷 积 神 经 网 络(semi-discrete convolutional neural network,SDNN)算法。为简便起见,以一维问题为 例进行阐述

网 络 选 用 3 个 卷 积 层,每 层 32 个 滤 波 器,大 小 为 5×5 的固定核,激活函数选用 Relu 函数,网络训 练采用 Adam 优化器,训练 40 000 步左右,且所有算 例的学习率均设置为 0.003,批量大小设置为 32,通 过全连接神经网络输出结果

文章主要介绍了如何利用深度学习,特别是卷积神经网络(CNN),来求解双曲守恒律方程。这类方程在流体力学、物理等领域应用广泛,但传统的数值方法存在分辨率低、依赖网格等问题,而深度学习方法在处理复杂场景时容易出现位置偏移或抹平现象

文章提出的半离散卷积神经网络算法(SDNN)将传统低阶有限体积格式与卷积神经网络相结合,利用CNN优化每个时间层传统格式的权重系数,从而在空间方向上进行近似,并用简单的欧拉格式进行时间方向的推进

1. 算法原理

  • 传统方法的局限性

    • 低阶格式:构造简单,但分辨率低,依赖网格质量。P1

    • 机器学习方法:不依赖网格,但易出现位置偏移或抹平现象。P1

  • SDNN 算法

    • 将机器学习方法与传统低阶格式相结合,发挥两者优势。

    • 利用 CNN 优化每个时间层传统格式的权重系数。P2

    • 基于较少节点即可得到高分辨率数值结果。P2

2. 算法实现

  • 网络结构: 3 个卷积层,每层 32 个滤波器,5x5 的固定核,Relu 激活函数。P3

  • 训练过程

    • 输入:空间位置 x 和当前时刻 u。

    • 输出:系数 α0, α1。

    • 损失函数:下一时刻函数值与真实值的差。P3

    • 优化器:Adam。P3

    • 训练步数:40,000 步左右。P3

3. 数值算例

  • 线性对流方程

    • 算例 1-3 验证了 SDNN 算法在求解包含移动激波、激波前解梯度变化较大等问题的有效性,并与迎风格式进行比较,结果表明 SDNN 格式能够有效捕捉激波,分辨率高且未出现伪振荡。P4
  • Burgers 方程

    • 算例 4-5 验证了 SDNN 算法在求解包含激波、稀疏波以及解性质变化大等问题的有效性,并与熵稳定格式进行比较,结果表明 SDNN 格式在光滑区域、解性质变化大的区域及间断区域的计算结果均较好。P4
  • 二维对流方程

    • 算例 6 验证了 SDNN 算法在求解二维对流问题的有效性,并与迎风格式进行比较,结果表明 SDNN 格式能够保持较大的浓度梯度,而传统格式的数值耗散较大。P6

4. 结论与展望

  • SDNN 算法在求解一维和二维双曲守恒律方程方面取得了较好的结果,可以用于各种经典和复杂的流动问题的求解。P6

  • 未来可以将该算法推广应用于更复杂环境的数值求解,例如高维问题、非线性问题等。

关键词: 双曲守恒律方程;有限体积法;卷积神经网络模型

StruMNet: 一种融合神经网络和偏微分方程的结构网格生成方法

MGNet利用PINN在选定的变换域求解椭圆型、抛物型或双曲型微分方程, 方程求解的结果即是生成的网格点. 该方法首先通过边界拟合获得物理边界曲线的连续表达形式, 然后将得到的曲线函数和计算域内的采样点作为输入, 输入到MGNet的网络结构中, 其中, 边界点遵循类似于PINN中的边界项损失, 计算域内的采样点遵循用于指导网格生成的PDE的损失. 在训练过程中, MGNet学习高维空间中的网格划分规则, 最终得到计算域与物理域之间的有效映射关系; 然而, 该算法使用2个子网络进行训练和网格生成, 训练开销较大, 且对于复杂边界处的信息捕捉能力不强, 生成的网格质量有待提高. 针对上述缺陷, StruMNet通过使用单个神经网络进行训练和网格生成, 降低了训练开销; 其次, 引入损失函数自适应权重策略动态地平衡不同损失项和边界点加权机制, 增强模型的学习能力, 以更好地捕捉复杂边界处的信息, 提高边界处的网格质量.

图1所示为StruMNet的结构. 其中, 输入是从计算域的内部和边界上采样的训练数据, 输入层是数据点对应的二维点序列 � = { ( � � , � � ) } � = 1 � = � , � 表示样本点的个数; 隐藏层由多层全连接的神经元组成; 输出层有2个神经元, 负责输出预测的网格的 � , � 坐标; 自动微分层负责计算下一步控制方程中需要使用到的偏微分量; 损失函数由控制方程的残差和边界拟合误差分别乘以自适应权重任务权重 1 2 � 1 2 和 1 2 � 2 2 (图中加权损失项的 � = 2 ), 并加上正则化项得到. 随后, 损失函数会反向传播以更新网络的参数 � .

 

StruMNet 是一种融合神经网络和偏微分方程的结构网格生成方法,旨在提高计算流体力学 (CFD) 数值模拟中网格生成的效率和智能化水平。

主要内容

  • 问题背景: 网格生成是 CFD 数值模拟的关键步骤,传统方法效率低且难以适应复杂几何形状。P3

  • 方法介绍: StruMNet 结合了物理信息神经网络 (PINN) 和椭圆型偏微分方程 (PDE),将网格生成问题转化为无监督的优化问题。P3

  • 方法特点

    • 输入: 计算域的边界和内部采样点。P4

    • 模型: 单个神经网络,输出预测的网格点坐标。P4

    • 损失函数: 结合控制方程残差和几何边界约束损失,并引入自适应权重策略和点加权机制。P4

    • 输出: 预测的网格点,可以快速生成高质量的结构网格。P2

  • 实验结果: 在不同几何形状上进行实验,StruMNet 生成的网格质量优于 PINN 和 MGNet 方法,且效率相比传统方法提高 3 个数量级。P6P8

方法优势

  • 无监督学习: 无需大量标记数据,降低了训练成本。P3

  • 高质量网格: 引入损失函数自适应权重策略和点加权机制,提高了网格质量和边界拟合能力。P4P5

  • 高效生成: 相比传统方法,生成速度提升 3 个数量级。P8

方法局限性

  • 对系数变化敏感: 需要进一步研究以提高鲁棒性。

总结

StruMNet 是一种高效且智能的结构网格生成方法,为 CFD 数值模拟提供了新的思路,具有广阔的应用前景。

未来研究方向

  • 将该方法推广应用于更复杂的环境,例如高维问题、非线性问题等。

  • 进一步提高方法的鲁棒性和泛化能力。

  • 探索与其他深度学习方法的结合,例如图神经网络等。

训练环境

为了验证 StruMNet 生成网格的质量, 在 3 种 形状上进行实验, 将 3 种形状称为外形 1~外形 3. StruMNet 的隐藏层设置为 4 层, 每层包含 45 个神 经 元 , 除 输 出 层 外 均 使 用 tanh 激 活 函 数 . 将 StruMNet 与 PDE[8]、TFI[10]、PINN[16]和 MGNet[15] 方 法 进 行 实 验 , 为 了 便 于 对 比 , 将 PINN[16]和 MGNet[15]方法的参数配置与 StruMNet 相同. 在网 络训练的过程中, StruMNet 使用 Xavier 正态分布 进行初始化, 学习率设置为 0.001; 任务权重 i a 的 初始值设为 1, 学习率为 0.000 1. 训练平台为 RTX 2080Ti GPU, 16 GB 内存. 除了使用平均测试集损失、平均最大夹角、平 均最小夹角判断生成的网格质量外, 本文引入角 波动最大值和角波动最小值这 2 种新的评价指标 辅助判断. 角波动最大值和角波动最小值是分别 重复 10 次实验, 选择在测试集上损失最小的模型 进行网格生成, 并将对比生成的网格之间的最大 夹角的角度差记为角波动最大值; 同理, 可以得到 角波动最小值. 这 2 个指标在一定程度上反映了神 经网络预测的稳定性情况和鲁棒性. Jacobian 指标 度量生成的网格是否能够准确捕捉输入域的几何 形状, 在质量良好的网格中, 该指标应均大于 0. 图 2 所示为在外形 1 上 5 种方法生成结构网 格质量可视化对比结果. 其中, 每个分图中下方的 子图展示了最小夹角的可视化效果, 红色区域表 示网格正交性良好, 蓝色(或绿色)区域表示正交性 较差(下文同

生成的网格如何

由于 StruMNet 主要关注网格生成,而非方程求解,因此文章采用了多种指标来评估生成网格的质量:

1. 数值指标

  • 平均测试集损失: 衡量神经网络预测的网格点与真实网格点之间的差异。P6

  • 平均最大夹角: 衡量网格单元内部角度的最大值,数值越小表示网格正交性越好。P6

  • 平均最小夹角: 衡量网格单元内部角度的最小值,数值越大表示网格正交性越好。P6

  • 角波动最大值: 衡量多次实验中网格正交性的变化范围,数值越小表示模型预测越稳定。P5

  • 角波动最小值: 衡量多次实验中网格正交性的变化范围,数值越小表示模型预测越稳定。P5

  • Jacobian 指标: 检验生成的网格是否出现负面积单元,所有单元的 Jacobian 指标应大于 0。P7

2. 可视化指标

  • 最小夹角可视化: 通过颜色深浅表示网格单元内部角度的大小,红色区域表示正交性良好,蓝色或绿色区域表示正交性较差。P5

3. 对比方法

文章将 StruMNet 与其他几种网格生成方法进行了对比,包括:

  • TFI (Transfinite Interpolation): 一种代数网格生成方法。P3

  • PDE (Partial Differential Equation): 一种基于偏微分方程的网格生成方法。P3

  • PINN (Physics-Informed Neural Networks): 一种基于物理信息神经网络的网格生成方法。P3

  • MGNet (Mesh Generation Network): 一种基于神经网络的网格生成方法。P3

通过对比不同方法的数值指标和可视化结果,可以评估 StruMNet 生成的网格质量。

需要注意的是,这些指标并不能完全反映网格质量,还需要根据具体的应用场景进行综合评估

为啥要生成网格

生成网格点是为了解方程,更具体地说,是为了进行计算流体力学 (CFD) 数值模拟。

CFD 数值模拟的步骤

  1. 前处理: 将物理问题建模为数学模型,并进行网格生成,将连续的物理域离散化为网格单元。P3

  2. 求解: 在生成的网格上求解控制方程,得到流场等物理量的数值解。

  3. 后处理: 对求解结果进行分析和可视化,得到物理现象的数值模拟结果。

网格生成的重要性

  • 离散化: 将连续的物理域离散化为网格单元,以便进行数值求解。

  • 精度: 网格质量直接影响数值模拟的精度和可靠性。

  • 效率: 网格生成效率直接影响数值模拟的整体效率。

StruMNet 的作用

  • 快速生成高质量网格: StruMNet 可以快速生成高质量的结构网格,提高 CFD 数值模拟的效率。P8

  • 适应复杂几何形状: StruMNet 可以适应复杂的几何形状,生成高质量的网格,提高数值模拟的精度。P8

总结

生成网格点是 CFD 数值模拟的重要步骤,直接影响数值模拟的精度和效率。StruMNet 作为一种高效且智能的网格生成方法,可以有效地提高 CFD 数值模拟的效率和质量。

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值