流体模拟基础

本文介绍了矢量微积分中的关键概念,包括梯度测量场的变率,散度评估向量场的汇聚/发散,旋度衡量旋转效应,以及拉普拉斯算子表示场的局部变化。还讨论了Navier-Stokes方程中的动量方程及其各组成部分,如重力、压力梯度和黏性项,以及材料导数在描述物体运动中的作用。
摘要由CSDN通过智能技术生成

矢量微积分

梯度Gradient

梯度测量标量场的变化速度和方向。梯度算子记为 ∇ \nabla
二维: ∇ f ( x , y ) = ( ∂ f ∂ x , ∂ f ∂ y ) \nabla f(x,y) = (\frac {\partial f}{ \partial x}, \quad \frac {\partial f}{ \partial y}) f(x,y)=(xf,yf)
三维: ∇ f ( x , y , z ) = ( ∂ f ∂ x , ∂ f ∂ y , ∂ f ∂ z ) \nabla f(x,y,z) = (\frac {\partial f}{ \partial x},\quad \frac {\partial f}{ \partial y},\quad \frac {\partial f}{ \partial z}) f(x,yz)=(xf,yf,zf)
∇ = ( ∂ ∂ x , ∂ ∂ y , ∂ ∂ z ) \nabla = (\frac {\partial }{ \partial x}, \quad \frac {\partial }{ \partial y},\quad \frac {\partial }{ \partial z}) =(x,y,z)

散度Divergence

散度只作用于向量场,测量向量在任意点上收敛或发散的程度。
输入为向量,输出为标量。如果是大小为正数则是源点,如果大小是负数则是汇聚点。
二维: ∇ ⋅ u ⃗ = ∇ ⋅ ( u , v ) = ∂ u ∂ x + ∂ u ∂ y \nabla \cdot \vec{u} = \nabla \cdot (u,v) = \frac {\partial u}{ \partial x} + \frac {\partial u}{ \partial y} u =(u,v)=xu+yu
三维: ∇ ⋅ u ⃗ = ∇ ⋅ ( u , v , w ) = ∂ u ∂ x + ∂ v ∂ y + ∂ w ∂ z \nabla \cdot \vec{u} = \nabla \cdot (u,v,w) = \frac {\partial u}{ \partial x} + \frac {\partial v}{ \partial y} + \frac {\partial w}{ \partial z} u =(u,v,w)=xu+yv+zw
∇ ⋅ u ⃗ = ( ∂ ∂ x , ∂ ∂ y , ∂ ∂ z ) ⋅ ( u , v , w ) = ∂ ∂ x + ∂ ∂ y + ∂ ∂ z \nabla \cdot \vec{u} = (\frac {\partial }{ \partial x}, \frac {\partial }{ \partial y},\frac {\partial }{ \partial z}) \cdot (u,v,w) = \frac {\partial }{ \partial x} + \frac {\partial }{ \partial y} + \frac {\partial }{ \partial z} u =(x,y,z)(u,v,w)=x+y+z
若矢量场散度为0,则称该矢量场无散度。在后面的Navier-Stokes方程中,他被应用于流速,他测量的是经过一小块流体表面的速率变化,让流体的的散度永远是零(即不可压缩状态)。

旋度Curl

旋度测量一个向量场绕任意点旋转的程度
二维: ∇ × u ⃗ = ∇ × ( u , v ) = ∂ v ∂ x − ∂ u ∂ y \nabla \times \vec{u} = \nabla \times (u,v) = \frac {\partial v}{ \partial x} - \frac {\partial u}{ \partial y} ×u =×(u,v)=xvyu
三维: ∇ × u ⃗ = ∇ × ( u , v , w ) = ( ∂ w ∂ y − ∂ v ∂ z , ∂ u ∂ z − ∂ w ∂ x , ∂ v ∂ x − ∂ u ∂ y ) \nabla \times \vec{u} = \nabla \times (u,v,w) = (\frac {\partial w}{ \partial y} - \frac {\partial v}{ \partial z} , \quad \frac {\partial u}{ \partial z} - \frac {\partial w}{ \partial x}, \quad \frac {\partial v}{ \partial x} - \frac {\partial u}{ \partial y}) ×u =×(u,v,w)=(ywzv,zuxw,xvyu)

拉普拉斯Laplacian

拉普拉斯用来测量给定位置的标量场值与附近的平均场值之间的差异。是梯度的散度

Navier-Stokes方程

动量方程: ρ D u D t = ρ g − ∇ p + μ ∇ 2 u \rho \frac{Du}{Dt} = \rho g - \nabla p + \mu \nabla ^2u ρDtDu=ρgp+μ2u
∇ ⋅ u = 0 \nabla \cdot u = 0 u=0

  • ρ g \rho g ρg:这是外力项。 g g g在SI单位制下单位为 m / s 2 m/s^2 m/s2 N / k g N/kg N/kg ρ \rho ρ在SI单位制下单位为 k g / m 3 kg/m^3 kg/m3
  • − ∇ p - \nabla p p:这一项代表了局部的压强梯度带来的力。流体倾向于从压强大的区域流向压强小的区域,方向沿着压强的负梯度方向。在SI单位制下单位为 N / m 2 N/m^2 N/m2
  • μ ∇ 2 u \mu \nabla ^2u μ2u:这一项是黏度或扩散项。 μ \mu μ称为流体的动力黏度系数,可以理解为流体的粘稠程度,即尝试阻碍流体流动的程度。黏度项的效果是产生使得速度扩散的力,而且当有高速度梯度时产生湍流现象。在SI单位制下单位为 N  ⁣ −  ⁣ s / m 2 N\!-\!s/m^2 Ns/m2

两边同时除以$$ ρ \rho ρ,可以得到 D u D t = g − 1 ρ ∇ p + ν ∇ 2 u \frac{Du}{Dt} = g - \frac{1}{\rho}\nabla p + \nu\nabla ^2u DtDu=gρ1p+ν2u ,其中运动黏度 ν = μ ρ \nu = \frac{\mu}{\rho} ν=ρμ

材料导数

材料导数联系了欧拉视角和拉格朗日视角
D D t : = ∂ ∂ t + u ⋅ ∇ \frac{D }{Dt} := \frac{\partial }{\partial t} + u \cdot \nabla DtD:=t+u
例如: 温度的材料导数: D T D t : = ∂ T ∂ t + u ⋅ ∇ T \frac{DT }{Dt} := \frac{\partial T}{\partial t} + u \cdot \nabla T DtDT:=tT+uT
材料导数由两部分组成:

  • 时间产生的变化
  • 移动产生的变化
  • 4
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值