矢量微积分
梯度Gradient
梯度测量标量场的变化速度和方向。梯度算子记为∇\nabla∇。
二维:∇f(x,y)=(∂f∂x,∂f∂y)\nabla f(x,y) = (\frac {\partial f}{ \partial x}, \quad \frac {\partial f}{ \partial y})∇f(x,y)=(∂x∂f,∂y∂f)
三维:∇f(x,y,z)=(∂f∂x,∂f∂y,∂f∂z)\nabla f(x,y,z) = (\frac {\partial f}{ \partial x},\quad \frac {\partial f}{ \partial y},\quad \frac {\partial f}{ \partial z})∇f(x,y,z)=(∂x∂f,∂y∂f,∂z∂f)
∇=(∂∂x,∂∂y,∂∂z)\nabla = (\frac {\partial }{ \partial x}, \quad \frac {\partial }{ \partial y},\quad \frac {\partial }{ \partial z})∇=(∂x∂,∂y∂,∂z∂)
散度Divergence
散度只作用于向量场,测量向量在任意点上收敛或发散的程度。
输入为向量,输出为标量。如果是大小为正数则是源点,如果大小是负数则是汇聚点。
二维:∇⋅u⃗=∇⋅(u,v)=∂u∂x+∂u∂y\nabla \cdot \vec{u} = \nabla \cdot (u,v) = \frac {\partial u}{ \partial x} + \frac {\partial u}{ \partial y}∇⋅u=∇⋅(u,v)=∂x∂u+∂y∂u
三维:∇⋅u⃗=∇⋅(u,v,w)=∂u∂x+∂v∂y+∂w∂z\nabla \cdot \vec{u} = \nabla \cdot (u,v,w) = \frac {\partial u}{ \partial x} + \frac {\partial v}{ \partial y} + \frac {\partial w}{ \partial z}∇⋅u=∇⋅(u,v,w)=∂x∂u+∂y∂v+∂z∂w
∇⋅u⃗=(∂∂x,∂∂y,∂∂z)⋅(u,v,w)=∂∂x+∂∂y+∂∂z\nabla \cdot \vec{u} = (\frac {\partial }{ \partial x}, \frac {\partial }{ \partial y},\frac {\partial }{ \partial z}) \cdot (u,v,w) = \frac {\partial }{ \partial x} + \frac {\partial }{ \partial y} + \frac {\partial }{ \partial z}∇⋅u=(∂x∂,∂y∂,∂z∂)⋅(u,v,w)=∂x∂+∂y∂+∂z∂
若矢量场散度为0,则称该矢量场无散度。在后面的Navier-Stokes方程中,他被应用于流速,他测量的是经过一小块流体表面的速率变化,让流体的的散度永远是零(即不可压缩状态)。
旋度Curl
旋度测量一个向量场绕任意点旋转的程度
二维:∇×u⃗=∇×(u,v)=∂v∂x−∂u∂y\nabla \times \vec{u} = \nabla \times (u,v) = \frac {\partial v}{ \partial x} - \frac {\partial u}{ \partial y}∇×u=∇×(u,v)=∂x∂v−∂y∂u
三维:∇×u⃗=∇×(u,v,w)=(∂w∂y−∂v∂z,∂u∂z−∂w∂x,∂v∂x−∂u∂y)\nabla \times \vec{u} = \nabla \times (u,v,w) = (\frac {\partial w}{ \partial y} - \frac {\partial v}{ \partial z} , \quad \frac {\partial u}{ \partial z} - \frac {\partial w}{ \partial x}, \quad \frac {\partial v}{ \partial x} - \frac {\partial u}{ \partial y})∇×u=∇×(u,v,w)=(∂y∂w−∂z∂v,∂z∂u−∂x∂w,∂x∂v−∂y∂u)
拉普拉斯Laplacian
拉普拉斯用来测量给定位置的标量场值与附近的平均场值之间的差异。是梯度的散度
Navier-Stokes方程
动量方程:ρDuDt=ρg−∇p+μ∇2u\rho \frac{Du}{Dt} = \rho g - \nabla p + \mu \nabla ^2uρDtDu=ρg−∇p+μ∇2u
∇⋅u=0\nabla \cdot u = 0∇⋅u=0
- ρg\rho gρg:这是外力项。ggg在SI单位制下单位为m/s2m/s^2m/s2或N/kgN/kgN/kg。ρ\rhoρ在SI单位制下单位为kg/m3kg/m^3kg/m3
- −∇p- \nabla p−∇p:这一项代表了局部的压强梯度带来的力。流体倾向于从压强大的区域流向压强小的区域,方向沿着压强的负梯度方向。在SI单位制下单位为N/m2N/m^2N/m2
- μ∇2u\mu \nabla ^2uμ∇2u:这一项是黏度或扩散项。μ\muμ称为流体的动力黏度系数,可以理解为流体的粘稠程度,即尝试阻碍流体流动的程度。黏度项的效果是产生使得速度扩散的力,而且当有高速度梯度时产生湍流现象。在SI单位制下单位为N − s/m2N\!-\!s/m^2N−s/m2
两边同时除以$$ρ\rhoρ,可以得到DuDt=g−1ρ∇p+ν∇2u\frac{Du}{Dt} = g - \frac{1}{\rho}\nabla p + \nu\nabla ^2uDtDu=g−ρ1∇p+ν∇2u ,其中运动黏度ν=μρ\nu = \frac{\mu}{\rho}ν=ρμ
材料导数
材料导数联系了欧拉视角和拉格朗日视角
DDt:=∂∂t+u⋅∇\frac{D }{Dt} := \frac{\partial }{\partial t} + u \cdot \nablaDtD:=∂t∂+u⋅∇
例如: 温度的材料导数:DTDt:=∂T∂t+u⋅∇T\frac{DT }{Dt} := \frac{\partial T}{\partial t} + u \cdot \nabla TDtDT:=∂t∂T+u⋅∇T
材料导数由两部分组成:
- 时间产生的变化
- 移动产生的变化
本文介绍了矢量微积分中的关键概念,包括梯度测量场的变率,散度评估向量场的汇聚/发散,旋度衡量旋转效应,以及拉普拉斯算子表示场的局部变化。还讨论了Navier-Stokes方程中的动量方程及其各组成部分,如重力、压力梯度和黏性项,以及材料导数在描述物体运动中的作用。
4万+

被折叠的 条评论
为什么被折叠?



