定义
队列是一种只允许在一段进行插入,在另一端进行删除的先进先出线性表,插入端为队尾,删除端为队头。
从上图我们可以看到,如果使用数组进行实现,当队头出队后,队头++,造成了原来地方的空间浪费,对此我们可以让front或者back到达数组末端的时候回到数组头即可。
这种队列我们称之为循环队列。
对于循环队列,我们要对判满做出调整,如果队头指针和队尾指针指向了同一块地址,这就可能是队空或者队满,需要额外添加一个flag变量,当flag==1&&rear==front时队满,否则队空。
还有一种判断方法是,保存一块内存空间,当front和rear处于如下图的两种状态,我们认为队满。
当他们相差一个位置且空余一块内存空间的情况下就是队满,但他们之间可能紧挨着【右图】或者相差一圈【左图】,所以我们假定队列的最大长度为maxsize,随后将rear+1,这样,无论他们相差一圈或一个位置,对maxsize取模后rear都将==front。
所以,队满的判断条件为:(rear+1)%maxsize==front
那么,我们如何求得队列的真实长度呢?
如上图左方,队列的长度就是rear-front,而对于右方,队列长度被分割成了两块,这个队列左边的长度就是rear,右边的长度则是最大长度减去front,也就是rear-front+maxsize。
我们发现,在左方的队列中,maxsize-front刚好等于maxsize,所以我们只要对最后的结果进行对maxsize的取模,就可以得到真实的队列长度,而我们刚才总结的右方的队列长度公式对maxsize取模没有影响,所以这样我们就可以让左右公式在形式上取得一致。
所以,通用队列长度公式为:(rear-front+maxsize)%maxsize
通过以上两个总结公式,我们就可以简单的完成循环队列的实现
下为代码实现:数组实现
#include <iostream>
using namespace std;
#define MAX_SIZE 5
//测试案例,maxsize只取到5,如有需要自行调整
typedef struct queue{
int count;
int front;
int rear;
int data[MAX_SIZE];
}Queue;
void Init(Queue* ptr) { //初始化队列
ptr->count = 0;
ptr->front = 0;
ptr->rear = -1;
}
bool QueueFull(Queue* ptr) { //判断队列是否满
return ptr->count >= MAX_SIZE;
}
bool QueueEmpty(Queue* ptr) { //判断队列是否为空
return ptr->count <= 0;
}
void Append (Queue* ptr, int item) { //入队
if (QueueFull(ptr)) {
cerr << "队列满了!" << endl;
return;
}else {
ptr->count ++;
ptr->rear = (ptr->rear + 1) % MAX_SIZE;
ptr->data[ptr->rear] = item;
}
}
void Pop(Queue* ptr) { //出队
if (QueueEmpty(ptr)) {
cerr << "队列为空!" << endl;
return;
}else {
ptr->count --;
ptr->front = (ptr->front + 1) % MAX_SIZE;
}
}
int QueueSize (Queue* ptr) { //返回队列长度
return ptr->count;
}
void Show(Queue* ptr) { //遍历队列
if(QueueEmpty(ptr)) {
cout << "队列为空!" << endl;
return;
}else {
cout << "队列遍历: ";
int i = ptr->front;
while (i != ptr->rear) {
cout << ptr->data[i] << " ";
i ++;
i = i % MAX_SIZE;
}
cout << ptr->data[ptr->rear] << " ";
}
cout << endl;
}
int main() {
Queue* dummy = (Queue *)malloc(sizeof(Queue)); //申请结点空间
Init(dummy);
Append(dummy, 11);
Append(dummy, 5);
Append(dummy, 23);
Append(dummy, 18);
Pop(dummy);
Show(dummy);
Append(dummy, 33);
Pop(dummy);
Show(dummy);
Append(dummy, 77);
Show(dummy);
return 0;
}
链表实现:【难度较低,没有新知识点,不再进行分析讨论】
#include<iostream>
using namespace std;
class MyCircularQueue {
private:
struct ListNode {
int val;
ListNode *next;
};
ListNode *front;
ListNode *rear;
bool empty;
public:
MyCircularQueue(int k) {
front = new ListNode;
rear = front;
for (int i = 0; i < k - 1; i++) {
ListNode *node = new ListNode;
rear->next = node;
rear = node;
}
rear->next = front;
rear = front;
empty = true;
}
~MyCircularQueue() {
ListNode* node = this->rear;
node->next = nullptr;
node = this->front;
while (node) {
ListNode* next = node->next;
delete node;
node = next;
}
}
bool enQueue(int value) {
if (isFull()) {
return false;
}
if (isEmpty()) {
empty = false;
} else {
rear = rear->next;
}
rear->val = value;
return true;
}
bool deQueue() {
if (isEmpty()) {
return false;
}
if (front == rear) {
empty = true;
return true;
}
front = front->next;
return true;
}
int Front() {
if (isEmpty()) {
return -1;
}
return front->val;
}
int Rear() {
if (isEmpty()) {
return -1;
}
return rear->val;
}
bool isEmpty() {
return empty;
}
bool isFull() {
return !empty && rear->next == front;
}
};
int main(){
return 0;}