对肺部图像进行深度学习分类,vgg16和ALEXNET网络的形式,并且采取了相关的数据得到如下的结果
本文采取了GU的形式进行搭建网络
首先对于所有的数据采集
然后搭建CNN网络,制定卷积层 池化层 全连接层的网络配置
将数据分为7:3,然后调用matlab函数进行训练。
得到验证的数据结果
一 采取vgg16的网络
调用了本身的vgg网络
如上是训练的过程 可以看出是由两个类别的数据
由于时间关系,我们只训练了三次,得到的结果如下
当我们想要更好的准确率 可以更改次数
也就是这个次数,第十五行的代码
二 采取alexnet网络
这是训练的数据结果
可以得到较好的数据信息
数据的结果
可以显示在用了alexnet网络后 达到了较好的效果
Gui的具体数据结果
在按钮端实现了其其检测
在另外的GUI实现了验证
可以看到进行验证 并且可以获得返回主界面的按钮。
源程序见:肺部图像预处理和深度学习的研究分类-Matlab文档类资源-CSDN下载
如有侵权,请联系作者删除。