肺部图像预处理和深度学习的研究分类

该博客介绍了使用VGG16和AlexNet网络对肺部图像进行深度学习分类的研究。通过数据采集和CNN网络配置,将数据按7:3比例划分训练集和验证集。实验结果显示,AlexNet网络在肺部图像分类中表现出更好的性能。作者提供了训练过程、结果展示,并分享了源代码链接供读者参考和下载。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

对肺部图像进行深度学习分类,vgg16和ALEXNET网络的形式,并且采取了相关的数据得到如下的结果

本文采取了GU的形式进行搭建网络

首先对于所有的数据采集

然后搭建CNN网络,制定卷积层 池化层 全连接层的网络配置

将数据分为7:3,然后调用matlab函数进行训练。

得到验证的数据结果

一 采取vgg16的网络

 调用了本身的vgg网络

如上是训练的过程  可以看出是由两个类别的数据

由于时间关系,我们只训练了三次,得到的结果如下

 当我们想要更好的准确率 可以更改次数

 也就是这个次数,第十五行的代码

二 采取alexnet网络

这是训练的数据结果

可以得到较好的数据信息

数据的结果

可以显示在用了alexnet网络后 达到了较好的效果

Gui的具体数据结果

在按钮端实现了其其检测

在另外的GUI实现了验证

 可以看到进行验证 并且可以获得返回主界面的按钮。

源程序见:肺部图像预处理和深度学习的研究分类-Matlab文档类资源-CSDN下载

如有侵权,请联系作者删除。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

人工智能专属驿站

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值