pca的人脸识别技术研究 matlab

本文探讨了PCA(主成分分析)在人脸识别中的使用,通过ORL人脸库进行实验,首先介绍ORL人脸库,接着详细阐述PCA的步骤,包括样本中心化、标准化、协方差矩阵计算等,并提供了快速PCA的MATLAB代码实现。随后介绍了BP神经网络在人脸识别中的应用,但识别准确率为89.5%-90.5%,略显不足。
摘要由CSDN通过智能技术生成

进行重建和构造的图

 

train_path='1\';
phi=zeros(64*64,20);
for i=1:4
path=strcat(train_path,num2str(i),'.pgm');
Image=imread(path);
Image=imresize(Image,[64,64]);
phi(:,i)=double(reshape(I

1.ORL人脸库

ORL人脸库诞生于英国剑桥Olivetti

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

人工智能专属驿站

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值