基于深度学习的时间序列摔倒检测
该方法使用深度学习中的时间序列分析技术(如长短期记忆网络,LSTM)来检测摔倒。摔倒行为通常具有时序性,即从站立到摔倒的过程是一种连续的变化,因此可以通过时间序列模型来进行检测。
步骤:
- 视频帧提取:将视频流切分为连续的帧。
- 关键点提取:使用姿态估计模型(如 YOLOv8)提取每一帧中的人体关键点。
- 时间序列数据构建:将每一帧的关键点位置(如肩膀、膝盖、头部等)作为特征,形成一个时间序列。
- LSTM 模型训练:使用 LSTM 模型来学习摔倒的时序模式。
- 摔倒判定:通过训练好的 LSTM 模型,实时分析时间序列,判断摔倒事件。
代码实现:基于 LSTM 的时间序列摔倒检测
python
复制编辑
import cv2 import numpy as np from tensorflow.keras.models import Sequential from tensorflow.keras.layers import LSTM, Dense from ultralytics import YOLO # 加载 YOLOv8 模型进行姿态估计 model = YOLO("yolov8n-pose.pt") # 使用预训练的 YOLOv8 模型进行姿态检测 # 假设我们已经训练好了LSTM模型 lstm_model = Sequential([ LSTM(64, activation='relu', input_shape=(30, 2), return_sequences=True), LSTM(64, activation='relu'), Dense(1, activation='sigmoid') # 输出为 0 或 1,表示是否发生摔倒 ]) lstm_model.load_weights("fall_detection_lstm_model.h5") # 加载预训练的模型 # 构建时间序列数据 sequence_length = 30 # 每个时间序列包含30帧 # 存储时间序列 sequence_data = [] cap = cv2.VideoCapture("path_to_your_video.mp4") # 替换为视频路径 while cap.isOpened(): ret, frame = cap.read() if not ret: break # 使用 YOLOv8 进行姿态检测 results = model(frame) keypoints = results[0].keypoints.cpu().numpy() if results[0].keypoints is not None else None if keypoints is not None: keypoints = keypoints[0] # 获取第一个检测到的人的关键点 # 提取关键点(例如,左肩和左膝)的 x, y 坐标 left_shoulder = keypoints[5][:2] left_knee = keypoints[13][:2] # 将当前帧的关键点作为特征添加到时间序列 sequence_data.append([left_shoulder, left_knee]) # 如果时间序列已满,进行摔倒检测 if len(sequence_data) >= sequence_length: # 将时间序列转换为适合LSTM输入的格式 sequence_input = np.array(sequence_data[-sequence_length:]).reshape(1, sequence_length, 2) prediction = lstm_model.predict(sequence_input) # 判断是否摔倒 if prediction[0] > 0.5: cv2.putText(frame, "FALL DETECTED!", (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2) # 显示视频 cv2.imshow("Fall Detection - LSTM", frame) # 按 'q' 键退出 if cv2.waitKey(1) & 0xFF == ord('q'): break cap.release() cv2.destroyAllWindows()
代码解释:
- 视频帧提取:每一帧的视频数据会被用于提取人体的关键点(如左肩、左膝)。
- 时间序列数据构建:每一帧提取的关键点会作为一个时间序列的一部分,形成连续的时间序列数据。
- LSTM 模型训练与预测:LSTM 模型会根据时间序列数据进行训练,学习摔倒的时序模式,并判断当前序列是否表示摔倒事件。
优点:
- 适应性强:通过学习时间序列的模式,LSTM 模型能够有效识别连续的摔倒动作。
- 时序性分析:摔倒行为具有显著的时序性,LSTM 是专门设计用来处理时间序列数据的模型。
缺点:
- 训练数据要求:需要大量的标注数据来训练 LSTM 模型,确保模型能够识别摔倒的时序模式。
- 计算复杂性:LSTM 模型需要一定的计算资源,尤其是对长时间序列的处理。
基于多模态感知的摔倒检测
该方法结合视频、音频以及传感器数据(如加速度计、陀螺仪等)来多模态感知摔倒事件。通过融合来自不同感知通道的数据,可以更准确地判断摔倒。
步骤:
- 视频分析:使用姿态估计模型(如 YOLOv8)提取视频中的人体关键点。
- 音频分析:通过音频信号处理提取摔倒时产生的声音特征。
- 传感器数据:通过加速度计、陀螺仪等传感器获取运动数据。
- 数据融合:将视频、音频、传感器数据融合,进行摔倒检测。
代码实现:基于多模态感知的摔倒检测
python
复制编辑
import cv2 import numpy as np from ultralytics import YOLO from sklearn.ensemble import RandomForestClassifier import soundfile as sf import librosa # 加载 YOLOv8 模型进行姿态估计 model = YOLO("yolov8n-pose.pt") # 使用预训练的 YOLOv8 模型进行姿态检测 # 加载训练好的分类模型 rf_model = RandomForestClassifier(n_estimators=100) rf_model.load("fall_detection_rf_model.pkl") # 加载已训练好的随机森林模型 # 假设我们已经采集了音频信号和传感器数据 def process_audio(audio_file): audio_data, sample_rate = sf.read(audio_file) mfcc = librosa.feature.mfcc(y=audio_data, sr=sample_rate) return np.mean(mfcc) # 提取MFCC特征的平均值作为音频特征 def process_sensor_data(acceleration, gyroscope): features = np.concatenate([acceleration, gyroscope], axis=0) return features # 处理视频、音频和传感器数据 def process_video_audio_sensor(video_file, audio_file, sensor_data): cap = cv2.VideoCapture(video_file) # 替换为视频路径 sequence_data = [] while cap.isOpened(): ret, frame = cap.read() if not ret: break # 使用 YOLOv8 进行姿态检测 results = model(frame) keypoints = results[0].keypoints.cpu().numpy() if results[0].keypoints is not None else None if keypoints is not None: keypoints = keypoints[0] # 获取第一个检测到的人的关键点 left_shoulder = keypoints[5] left_knee = keypoints[13] # 提取特征并保存 feature = np.concatenate([left_shoulder, left_knee]) sequence_data.append(feature) if len(sequence_data) >= 30: # 例如30帧为一个时间窗口 # 提取音频特征 audio_feature = process_audio(audio_file) # 提取传感器特征 sensor_feature = process_sensor_data(sensor_data['acceleration'], sensor_data['gyroscope']) # 将所有特征拼接 combined_features = np.concatenate([sequence_data[-30:], audio_feature, sensor_feature]) # 使用分类器进行预测 prediction = rf_model.predict([combined_features]) if prediction[0] == 1: cv2.putText(frame, "FALL DETECTED!", (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2) # 显示结果 cv2.imshow("Fall Detection - Multi-modal", frame) # 按 'q' 键退出 if cv2.waitKey(1) & 0xFF == ord('q'): break cap.release() cv2.destroyAllWindows() # 假设传感器数据(加速度和陀螺仪) sensor_data = { 'acceleration': np.array([0.1, 0.2, 0.9]), # 模拟加速度数据 'gyroscope': np.array([0.01, 0.05, 0.1]) # 模拟陀螺仪数据 } process_video_audio_sensor("video.mp4", "audio.wav", sensor_data)
代码解释:
- 视频分析:通过 YOLOv8 提取视频中的人体关键点,提取出关键点特征(如左肩、左膝)。
- 音频分析:使用
librosa
提取音频文件的 MFCC 特征,这些特征可以帮助识别摔倒时产生的声音(如冲击声)。 - 传感器数据分析:将加速度计和陀螺仪数据作为传感器输入,提取特征。
- 数据融合与分类:将视频、音频和传感器特征进行融合,使用预训练的随机森林分类器(或其他分类器)进行摔倒预测。
优点:
- 多模态感知:融合多种传感器数据,能够提高摔倒检测的准确性。
- 适应复杂环境:音频和传感器数据能够帮助弥补视觉信息丢失或不清晰的情况。
缺点:
- 需要多个硬件设备:该方法需要视频摄像头、麦克风和传感器等设备。
- 数据处理复杂:需要对不同模态的数据进行处理和融合,增加了算法的复杂度。
总结:
以上是两种新的摔倒检测方法:
- 基于深度学习的时间序列摔倒检测:通过时间序列模型(LSTM)对摔倒时的连续模式进行学习和预测。
- 基于多模态感知的摔倒检测:结合视频、音频和传感器数据,通过数据融合提高摔倒检测的准确性。