用ROC曲线检验模型?无需代码,用SPSS也能绘制出好看的ROC曲线哦!

ROC简介

曲线的全称是Receiver Operating Characteristic Curve(受试者工作特征)

ROC曲线是用来检验模型的预测能力的常用方式

ROC的常用指标是AUC,全称是area under the curve(曲线下面积)

AUC越大,表明模型的预测能力越好

一般而言,

AUC=1:模型能够完美区分正负样本

0.85≤AUC≤0.95:预测效果优秀

0.7≤AUC≤0.85:预测效果良好

0.5≤AUC≤0.7:一定的预测能力,但效果较低

AUC=0.5:预测能力与随机猜测无异

AUC<0.5: 预测能力比随机猜测还差

我们常做的横断面研究,常常需要分析一些自变量对某一个因变量的关系,这时候可以用上ROC曲线,以下是一个简单的举例

示例说明

1.数据   

自变量:人口学特征如性别、年龄、婚姻、学历体重指数等分类变量

因变量:是否患有焦虑症(二分类变量)

2.分析目的

①自变量与因变量的关系(某一个自变量与因变量的关系)

②多个自变量构建出的模型对焦虑症症的预测能力

分析思路

可先通过单因素和多因素的logistic回归判断哪些自变量对因变量是有影响,有统计学意义的,也就是P<0.05。再将有统计学意义的变量构建出一个模型,这个模型来预测焦虑症。那么我们就可以通过绘制ROC曲线来判断模型的预测能力。

数据分析

此处省略利用SPSS进行logistic分析的过程。假设得出的结果是多因素logistic回归结果显示性别、年龄、婚姻、学历、体重指数都与焦虑症正向相关

SPSS建立模型

1.分析→回归→二元logistic

图片

2.将变量放入相应的变量框

图片

3.在“保存”中选中“概率”,点击继续

图片

4.变量列表会多出一列,就是预测概率,可以理解为预测值,这个预测值将会用来与实际值比较,绘制ROC曲线

图片

SPSS绘制ROC曲线

1.分析→ROC曲线(不同SPSS版本这个功能位置不同,有的在“分类”模块里面

图片

2.将“预测概率”放入检验变量,将“焦虑症”(实际值)放入状态变量

图片

3.“状态变量值”一般指的是阳性的变量值,这里的数据有焦虑症用1表示,无焦虑症用0表示。所以这里的状态变量值为1。“显示”可以勾选前三个

图片

4.在SPSS的输出中,看曲线和曲线下面积值

区域下面积就是AUC值,是要得出的数据

图片

这个AUC值还可以,模型预测能力良好

双击图像可以唤出图像编辑器对横纵坐标、颜色等进行编辑

图片

根据需要编辑图表大小,填充与边框,变量

图片

单击一次可以变成可输入的文本框,转成英文标题

图片

双击轴标题可以改变字号,颜色等

图片

怎么保存编辑好的图呢?

在“编辑”下面点击“复制图表”,可以把图表粘贴到word中保存下来

图片

这样ROC曲线就画好咯

图片

当需要在一张图中绘制多条ROC曲线时,就可以用R语言绘制,下期再更新。

### 如何在SPSS中创建ROC曲线图 #### 准备工作 确保已安装并启动IBM SPSS Statistics软件。准备好用于分析的数据文件,其中应包含测试变量(如某种疾病的检测指标)和状态变量(表示个体是否患病)。这些准备工作的完成有助于后续操作顺利进行。 #### 单因素ROC曲线绘制方法 为了构建单因素ROC曲线,在菜单栏依次点击`Analyze>ROC Curve…`选项[^1]。此时会弹对话框,需指定检验变量(Test Variable)即预测因子,以及状态变量(State Variable),该变量用来定义实际类别。设定好之后继续配置其他参数直至满足需求为止。 对于多分类问题,则可通过设置不同的阈值来计算敏感性和特异性,并最终形成完整的ROC图形;而对于二元分类情况,默认情况下无需额外调整即可获得理想的结果。 #### 多因素联合诊断ROC曲线绘制流程 当涉及到多个影响因素共同作用下的综合评估时,可以采用逻辑回归模型或其他多元统计技术先建立预测方程,再基于此得到概率得分作为新的单一维度输入参与到标准的ROC分析过程中去: - 首先执行Logistic Regression过程,将所有潜在的相关自变量纳入考量范围; - 输保存下来的估计概率值作为一个合成特征加入到原始数据库里; - 接着按照前述介绍的方法调用ROC命令接口,只不过这次选用刚刚生成的概率列代替原先简单的测量数值充当Test Variable角色参与运算。 ```spss * 假设已经完成了logistic regression并将结果存储. LOGISTIC REGRESSION VARIABLES outcome /METHOD=ENTER var1 var2 var3. * 使用新产生的概率字段制作ROC图表. ROCCURVE VARIABLE=predictedProbability BY status(0,1). ``` 上述脚本展示了如何利用先前建模所得的信息来进行更复杂的性能评测可视化表达方式之一——多因素联合作业模式下ROC曲面描绘的具体实现路径。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值