【定量遥感】实验三 植被指数反演

一、实验目的

陆地卫星TM数据(TM 6)热波段表示地表热辐射和地表温度变化。根据地表热辐射传导方程,推导出一个简单易行并且精度较高的演算方法,把大气和地表的影响直接包括在演算公式中。 该算法需要用地表辐射率、大气透射率和大气平均温度 3个参数进行地表温度的演算,而通过验证表明,该方法的地表温度演算较高。

通过本次实验,希望可以掌握以下内容:

  1. 在以往实验课的基础上,进一步学习理解并熟练掌握ERDAS主菜单中的主要功能模块,包括监督分类、模型构建、数据导入、格式转换、遥感影像裁剪等等,并可以做到根据实验要求自行选择功能模块完成功能组合达到实验目的;
  2. 学习了解并通过实验课内容熟练掌握Erdas软件中的Erdas Modeler功能,理解掌握学习不同遥感软件的不同建模方法,进一步熟练掌握遥感定量反演温度的算法设计与模型构建方法;
  3. 在以往的实验课与理论课学习的基础上,进一步加深对ETM影像植被反演、温度反演的方法学习与理论知识的掌握程度,同时进一步增强对各种遥感软件平台的各个功能的熟练程度与操作能力。

二、实验内容

  1. 植被指数反演
  2. 热红外波段亮度温度计算
  3. 植被覆盖度计算
  4. 监督分类与地表比辐射率计算
  5. 大气参数处理
  6. 地表温度计算
  7. 专题地图

三、实验数据

  1. LE71230392003097EDC00
  2. Landsat ETM+影像

四、植被指数反演——实验过程

(1)数据预处理

1.辐射定标与波段合成

辐射定标与波段合成的操作,在第一次实验报告中已经有了比较详细与全面的过程步骤记录,此次实验中的步骤与第一次实验中学习的并无差别,在此我也不再赘述,提醒注意在编辑头文件这一步骤时,一定要将中心波长的波段单位设置为微米。

2.大气校正

根据我们之前实验大气校正的结果,可以判断FLAASH大气校正方法的结果是最好的,因此我们在此处依然选用FLAASH大气校正方法,方法步骤与之前的FLAASH大气校正相同,但需要注意的是由于获取影像时间不同,气溶胶模型的选择也是不同的

3.数据格式转换

在ENVI软件中得到大气校正后的遥感影像结果后,我们需要把ENVI中的数据导入ERDAS以进行后续的相关处理,但在ERDAS中tif格式的数据只能保存遥感影像的基本图像内容,我们必须导入img格式的数据才可以保存利用遥感影像中各波段的数据,以下是两种分别在ENVI和ERDAS中导出img格式数据的方法:

1)在ENVI中:

2)在ERDAS中:

4.影像裁剪

成功导入img格式的数据后,根据我们导入的遥感影像数据类型,软件最上方一栏将会出现Raster工具,点击Raster—> Subet&Chip,这一工具可以帮助我们裁剪出遥感影像中我们想要的某一特定部分,打开参数表如下:

!!!特别注意!!!在导出的img图像中,所有的数据都是整型数据,考虑到之后数据处理需要,我们应该将数据类型转化为双精度浮点型。在此参数表中的输出文件中我们就必须进行数据类型转换这一步骤,在之后的模型构建的步骤中,输入的数据类型是无法改变的。

点击参数表最下部的AOI选项,选择AOI File即可导入我们的裁剪范围的AOI,点击OK,即可得到裁剪过后的结果,并将结果导入至ERDAS中。

得到实验结果如下,至此我们所有的数据预处理工作就已经完成了:

(2)各类植被指数计算

1.Model Maker介绍

以上是我们利用过去几次实验课所学知识与老师所提供的数据完成的数据预处理工作,接下来我们终于可以在ERDAS中正式开始对遥感反演的模型构建工作。在此之前,我们需要先介绍一下模型构建的一个重要工具Model Maker,点击Toolbox—> Model Maker即可打开;

下图为Model Maker中我们常用到的一些工具的具体功能,其中的栅格、文本、函数定义是我们这次实验中将会重点使用的。栅格用于选择输入的遥感影像或者输出的遥感影像;函数定义用于输入我们构建的模型的表达式;连接符号由输入遥感影像连接到输出遥感影像;文本则是用于添加注释,与代码的编写同理,在今后日益复杂的模型构建环境中,从现在就最好养成积极写注释的习惯。

除此之外,每构建完一个正确的模型,我们可以在File中保存我们的模型结构以便今后的反复使用(只需要更改输入与输出文件路径),也可以在File中打开ERDAS为我们提供的许多自带的模型,此次实验中我们主要掌握构建模型的方法,空余时间可以对这些代码进行摸索与尝试。

1)栅格输入

栅格的输入不需要我们进行过多的操作,只需要输入选择正确我们的遥感影像即可,同时注意,我们可以在此参数表中检查遥感影像的数据类型,可以看到此时输入遥感影像的数据类型是无法改变的,如果数据类型不是为我们想要的,需要回到遥感影像裁剪的步骤;

2)函数定义

函数定义部分是我们模型构建中最为重要的部分,其基本使用方法与我们在Arcgis中使用的栅格计算器相同,左部分中不带[]的是包含全波段的遥感影像,带[]的是指单独某一波段的遥感影像;右部分的Functions中我们可以选择不同的模块,它会我们提供非常多不同的常用函数的模板;在本次实验中,我们主要会应用到的是Conditional中的函数模板

3)栅格输出

栅格的输出与栅格的输入基本上相同,唯一需要注意的地方在于输出结果的数据类型是需要我们来设置的,我们可以根据我们的实验需要选择合适的输出数据类型,在本次实验中我们选择输出的数据类型为Float Double

2.三种植被指数模型建立:

充分了解掌握上述Model Maker工具的使用方法后,我们就可以开始对植被指数进行模型的建立,利用either等语句实现将数学模型转换为计算机可以接受并处理的语言,具体的公式如下表格所示:

DVI植被指数:

模型

公式

RVI植被指数:

模型

公式

NDVI植被指数

模型

公式

公式常见报错原因总结与解决方法

  1. 缺少括号,每一个if/or语句后面都需要跟上有自己的括号,以及括号格式不对,不建议直接手打括号;
  2. 遥感影像的文件名过长,或者文件名中有中文,都有可能导致建模报错;
  3. 不建议直接手打EITHER等等函数,可以利用Function Definiton中的公式输入的都直接输入;
  4. 部分情况下,在进行NDVI模型构建时,如果输入公式完全一样却仍然显示报错,在排除输入遥感影像错误的前提下,我们可以先进行分子与分母的数学操作生成相应遥感影像,最后进行相得到最终结果。

最终结果:

五、补充与心得

在第一次获得实验结果时,RVI与DVI的数据都没有太大误差,但是查看NDVI结果的数据时却发现最小值小于了-1的问题,通过课堂的学习我们可以知道正常的NDVI值得取值范围是在-1到1的,因此这个结果显然是在实验步骤中出现了一些问题。

通过与同学交流与询问老师,我们排除了NDVI建模与辐射定标过程中可能出现的问题,老师提醒我们FLAASH大气校正的参数表的参数选择中,每一个参数都会非常影响我们的最终结果,因此建议我们通过修改参数进行多次的大气校正来得到最好的结果。

通过研究大气校正的参数选择并结合我们NDVI计算的特点,我与同学发现:由于在计算NDVI前,我们进行了裁剪的操作,遥感影像的主要区域已经发生了变化,因此我们主要可以修改的FLAASH大气校正参数有两个:地表平均海拔与地区模型选择,因为遥感影像中的主要区域已经由广阔的农村与平原变为了长江周边的城市人类聚集区,这两个参数的变化也是十分重要起到决定我们植被指数最终结果的作用的。

最后将改变参数后的大气校正的NDVI结果进行对比,发现地面平均海拔对结果影响并不大,而是地区模型的选择非常影响我们的NDVI结果。虽然我们只是对遥感影像进行了裁剪而丝毫没有更换遥感影像,但是我们的参数就是要随着我们不同的使用与应用进行改变。因此在进行FLAASH大气校正时,我们一定结合我们需要具体应用或计算的结果来确定参数。

心得:

虽然大气校正的实验步骤我们在第二次实验课就已经进行比较详细的学习,但在此次实验中我还是进行了至少三次的大气校正:第一次是忘记根据遥感影像的拍摄时间,修改气溶胶模型,这说明了我对FLAASH大气校正的原理理解还不够透彻;第二次是在辐射定标步骤时忘记设定中心波长的单位为微米;第三次是在探索NDVI值为何出错的过程中,将地区模型从rural改为urban。

听起来虽然重做的次数很多很让人崩溃,但其实对于我来说,正是因为我已经做过了非常多次的大气校正,其中的每一个步骤我都已经烂熟于心,操作起来也非常的迅速,最耗费时间的反而是等待大气校正结果的过程。

我也逐渐感受到对于我们学生来说,遥感反演实验并不是一个考验我们智商的课程,也并不是单纯考验我们的细心,而是考验我们的耐心,就像我理解中的科研之路一样,虽然处处碰壁,但在这样一个过程中始终坚持,不断寻找错误,改正错误,最终达到完美的期望的结果。

六、植被指数反演——结果与分析

1.比较经过大气校正的植被指数和未经大气校正的植被指数差异:

(1)RVI

经过大气校正

未经过大气校正

分析:

上图左侧为经过FLAASH大气校正后的图像RVI信息,右侧为未经过FLAASH大气校正的图像RVI信息。可以明显看到未经过大气校正的RVI值与经过大气校正后的RVI值有非常大的不同,其一体现在最大值异常的大,可以初步判断为受云雾或大气影响而产生的异常值,其二体现在虽然有异常最大值,但其中位数依然小于经过大气校正的结果。由于得到的结果十分不具有规律性,我们暂时还无法判断未经过大气校正而导致这样结果的原因,但依然可以得出结论:大气散射对RVI结果有非常大的影响

(2)DVI

经过大气校正

未经过大气校正

分析:

上图左侧为经过FLAASH大气校正后的图像DVI信息,右侧为未经过FLAASH大气校正的图像DVI信息。DVI为近红外波段与红光波段的差值,因此无论是否经过大气校正,得到的结果的大致趋势都是相等的,但两个结果无论是最大值,最小值,平均值都有非常大的不同,未经过大气校正的最大值远小于经过大气校正的结果,而中位数远大于经过大气校正的结果,这也从侧面验证了大气散射对光谱波段的严重影响与大气校正的重要性,我们也可以从中得出结论:大气散射会削弱近红外波段,增强红光波段。

(3)NDVI

经过大气校正

未经过大气校正

分析:

上图左侧为经过FLAASH大气校正后的图像DVI信息,右侧为未经过FLAASH大气校正的图像DVI信息。由于NDVI的计算进行了归一化的处理,我们可以明显看出相比于上述两种植被指数,NDVI两种结果的差异是最小的,这也进一步论证了NDVI具有一定削弱大气散射影响的作用,但这并不意味着我们可以不进行大气校正的操作。其一:我们可以发现未经过大气校正的结果存在许多最大最小的异常值,这直接影响了我们的最大值最小值与中位数,其二:未经过大气校正的NDVI结果虽然整体趋势与前者一致,但数据波动非常之大,初步判断这是由于未经过大气校正,遥感影像中存在非常多的异常值,而这些异常值就会导致数据波动。因此我们最终可以得出结论:在此次实验的植被指数中,NDVI是受大气散射影响最小的,但依然十分影响我们利用NDVI进行后续处理等操作。

最终结论:

在遥感光谱波段中,大气散射会削弱近红外波段,增强红光波段从而对我们的植被指数结果产生影响。而在此次实验的三类植被指数中,由于不同植被指数的计算原理,归一化处理后的NDVI受大气散射影响最小,仅使用除法运算的RVI受大气散射影响最大,但很显然无论是哪种植被指数,如果我们想要进行后续的数据处理,都希望能尽可能的减小大气等因素带来的误差,通过这一实验,我们也从侧面进一步论证了大气校正的必要性。

2.比较各类植被指数数据:

RVI

DVI

NDVI

分析:

共同点:从数值的发展趋势与走向来看,三类植被指数的直方图是大致相同的,由最小值逐渐攀升,达到一个极大值后下降,形成一个波峰和一个波谷后再迅速攀升达到最大值,形成一个陡坡,随后逐渐下降至0。总体来看的两个波峰,一个波谷的特征是相同的。

通过开源地图软件搜索获得的武汉市实时卫星影像,用于对比不同植被指数的相同点与不同点。

数值的量级大小方面,通过与武汉市的遥感卫星的实时影像相对比,我们可以发现:湖泊、河流、人类聚集地的数值都是较小的,而植被、农田等地的数值则要明显高于其它地物,这与我们所想要获得的植被指数的效果是一致的。

不同点:观察三类植被指数的不同数值,可以看到由于数学公式的不同数值之间是有非常大的差异的,其中NDVI因归一化处理取值位于-1到1内,便于我们进行后续的计算处理,DVI仅进行了相减处理,所以数值较大RVI由于是除法处理,因此最小值存在0值。通过课堂理论学习我们可以得知:RVI在高植被覆盖度较为适用,NDVI在中等植被覆盖较为适用,DVI在低植被覆盖度较为适用。

而通过对比上述实验报告中得到的实验结果图,可以明显看出,RVI结果的效果图是较差的,仅仅只是表现出了左上角与左下角植被覆盖较高的部分;NDVI与DVI的结果效果图都较好,不仅准确的反映出了图像上部分沿河支流附近区域的高植被覆盖度,同时反映出了城市等地物的低植被覆盖度。

因此我们判断该遥感影像区域的植被覆盖应该为中低植被覆盖度的区域,且植被主要分布在遥感影像的上部分与左下角,通过与卫星实时图像对比,可以验证此结论是正确的。

以上内容主要为植被指数的反演内容,温度反演的内容请看后续文章。

评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值