遗传算法解决规划问题

引言

上一讲最后提到了遗传算法能够解决规划问题。那么具体如何实现的呢?这里使用一个geatpy库解决此类问题。

geatpy的简介

geatpy是遗传算法的框架,关于geatpy的详细学习,参考下面两篇文章
python遗传算法之geatpy学习
Geatpy库函数和数据结构
这里仅讲如何使用geatpy库解决规划问题

例1 单目标规划

在这里插入图片描述

import numpy as np
import geatpy as ea

class MyProblem(ea.Problem):
    def __init__(self):
        name = "MyProblem" #名字随意取
        M = 1 #目标维数,可以理解为有几个目标函数
        maxormins= [-1] #1: 最小化min, -1: 最大化max
        Dim = 3 #决策变量的个数
        varTypes = [0] * Dim
        lb = [0, 0, 0] #决策变量下界
        ub = [10, 10, 10] #决策变量上界,由第一个等式可知决策变量不超过7,这里设置大一点
        lbin = [1, 1, 1] #包不包括下边界    0代表不包含,即开区间  1代表包括,即闭区间
        ubin = [0, 0, 0] #包不包括上边界
        ea.Problem.__init__(self, name, M, maxormins, Dim, varTypes, lb, ub, lbin, ubin) #实例化
        
    def aimFunc(self, pop):
        Vars = pop.Phen
        
        x1 = Vars[:, [0]]
        x2 = Vars[:, [1]]
        x3 = Vars[:, [2]]
        pop.ObjV = 2 * x1 + 3 * x2 - 5 * x3 #目标函数
        pop.CV = np.hstack([np.abs(x1 + x2 + x3 - 7), #约束条件 ,不等式均化成小于等于0
                            10 - 2 * x1 + 5 * x2 - x3, 
                            x1 + 3 * x2 + x3 -12])
#实例化问题对象
problem = MyProblem()

#种群设置
Encoding = "RI" #实整数编码,还有"BG":二进制/格雷码, "P":排列编码
NIND = 100 #种群规模
Field = ea.crtfld(Encoding, problem.varTypes, problem.ranges, problem.borders) #创建区域描述器
population = ea.Population(Encoding, Field, NIND)

#算法参数设置
myAlgorithm = ea.soea_DE_best_1_L_templet(problem, population) #算法模板,这里使用差分进化DE/best/1/L
myAlgorithm.MAXGEN = 1000 #最大进化次数
myAlgorithm.mutOper.F = 0.5 #突变概率
myAlgorithm.recOper.XOVR = 0.7 #交叉概率
myAlgorithm.logTras = 0 #打印日志, 0表示不打印
myAlgorithm.verbose = False 
myAlgorithm.drawing = 1 #绘图

#种群进化
[BestIndi, population] = myAlgorithm.run()

#输出结果
print('评价次数:%s'%(myAlgorithm.evalsNum))
print('花费时间 %s 秒'%(myAlgorithm.passTime))
if BestIndi.sizes != 0:
    print("最优的目标函数值为 %s" % BestIndi.ObjV[0][0])
    print("最优决策变量:")
    for i in range(BestIndi.Phen.shape[1]):
        print(BestIndi.Phen[0, i])
else:
    print("未找到解")

在这里插入图片描述

例2 多目标规划

在这里插入图片描述

#问题对象
class MyProblem(ea.Problem):
    def __init__(self):
        name = "MOP"
        M = 2
        maxormins = [-1, 1] #-1:第一个函数最大值,1:第二个函数最小值
        Dim = 2
        varTypes = [0] * Dim
        lb = [0, 0]
        ub = [100, 100]
        lbin = [1] * Dim
        ubin = [0] * Dim
        ea.Problem.__init__(self, name, M, maxormins, Dim, varTypes, lb, ub, lbin, ubin)
        
    def aimFunc(self, pop):
        Vars = pop.Phen
        
        x1 = Vars[:, [0]]
        x2 = Vars[:, [1]]
        f1 = 2 * x1 + 3 * x2
        f2 = x1 + 2 * x2
        pop.ObjV = np.hstack([f1, f2])
        pop.CV = np.hstack([ #约束条件全部化成小于等于0的形式
            0.5 * x1 + 0.25 * x2 - 8,
            0.2 * x1 + 0.2 * x2 - 4,
            x1 + 5 * x2 - 72,
            10 - x1 - x2
        ])
problem = MyProblem()

Encoding="RI"
NIND = 200
Field = ea.crtfld(Encoding, problem.varTypes, problem.ranges, problem.borders)
population = ea.Population(Encoding, Field, NIND)

#使用NSGA2解决多目标规划问题
myAlgorithm = ea.moea_NSGA2_templet(problem, population)
myAlgorithm.MAXGEN = 500
myAlgorithm.mutOper.Pm = 0.3
myAlgorithm.recOper.XOVR = 0.8
myAlgorithm.logTras = 1
myAlgorithm.verbose = False
myAlgorithm.drawing = 1

[NDSet, population] = myAlgorithm.run()
print("用时: %s"%(myAlgorithm.passTime))
print("非支配个体数: %d"%NDSet.sizes) if NDSet.sizes != 0 else print("没有可行解")
if myAlgorithm.log is not None and NDSet.sizes != 0:
    print("HV: ", myAlgorithm.log["hv"][-1])
    print("Spacing: ", myAlgorithm.log["spacing"][-1])
    
if NDSet.sizes != 0:
    print("最优决策变量:")
    for i in range (NDSet.Phen.shape[1]):
        print(f"x{i}: {NDSet.Phen[0, i]}")
metricName = [["hv"]]
metric = np.array([myAlgorithm.log[metricName[i][0]] for i in range(len(metricName))]).T
ea.trcplot(metric, labels=metricName, titles=metricName)

在这里插入图片描述
可以求出决策变量的值为多少,再代入两个函数式中。但每次运行结果不同,每次带入计算, 选择最优的那一个解即可

参考资料

python遗传算法之单/多目标规划问题

  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
遗传算法可以用于解决装配序列规划问题。装配序列规划问题是指在装配过程中,确定零部件的装配顺序,以最小化总装配时间或最大化装配效率。 以下是一种基本的遗传算法解决装配序列规划问题的步骤: 1. 定义基因表示:将每个零部件表示为染色体的一个基因,基因的顺序即为装配顺序。 2. 初始化种群:随机生成一组初始染色体作为种群。 3. 适应度函数:定义一个适应度函数来评估每个染色体的适应度,即装配顺序的好坏程度。适应度函数可以根据具体问题进行设计,例如考虑装配时间、装配顺序的合理性等。 4. 选择操作:使用轮盘赌选择等方法根据适应度值选择一部分优秀的染色体作为父代。 5. 交叉操作:对选出的父代进行交叉操作,生成新的子代染色体。交叉操作可以采用单点交叉、多点交叉等方式。 6. 变异操作:对子代染色体进行变异操作,以引入新的基因组合。变异操作可以随机改变染色体中的一个或多个基因。 7. 更新种群:将父代和子代染色体合并,更新种群。 8. 终止条件:根据预设的终止条件,如达到最大迭代次数或找到满足要求的解,判断是否终止算法。 9. 重复步骤4-8,直到满足终止条件。 10. 输出结果:输出最优的装配顺序作为解决方案。 需要注意的是,具体问题的装配序列规划可能还涉及其他约束条件,如零部件之间的依赖关系、装配工艺限制等,需要根据具体情况进行相应的调整和扩展。同时,遗传算法的性能也受到参数设置和算法设计的影响,需要进行实验和调优才能得到较好的结果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值