Yolov3

YOLOv3通过引入多尺度预测、更深的Darknet-53网络、改进的锚点框和类别预测等,提升了目标检测的精度,尤其是在小目标和复杂场景上,同时保持了实时检测的特性。
部署运行你感兴趣的模型镜像

YOLOv3 是 YOLO 目标检测系列的第三个版本,由 Joseph Redmon 和 Ali Farhadi 在 2018 年的论文《YOLOv3: An Incremental Improvement》中提出。YOLOv3 保留了 YOLO 系列快速高效的特点,并引入了多项改进,以提高检测精度和处理复杂场景的能力。其主要特点包括:

1. **多尺度预测**:YOLOv3 在三个不同尺度上进行预测。它使用了类似特征金字塔网络的结构来检测不同大小的目标。这意味着它能更好地检测小目标,同时保持对大目标的良好检测能力。

2. **更深的网络架构(Darknet-53)**:YOLOv3 使用了新的 Darknet-53 网络作为其骨干网络。这个网络比之前的 Darknet-19 深且强大,包含了 53 个卷积层,旨在提高特征提取的能力。

3. **锚点框(Anchor Boxes)**:YOLOv3 继续使用锚点框来预测边界框,但进行了改进,以更好地适应不同形状的目标。

4. **类别预测改进**:YOLOv3 为每个锚点框使用逻辑回归来预测类别,而不是 YOLOv2 中的 softmax。这使得模型在预测多标签类(一个物体属于多个类别)方面更为有效。

5. **更好的性能和准确度平衡**:虽然 YOLOv3 在速度上略逊于 YOLOv2,但它在检测精度上有所提高,特别是在小物体的检测上。

6. **损失函数优化**:YOLOv3 对其损失函数进行了调整,以更好地处理不同大小的边界框。

总体而言,YOLOv3 在保持了 YOLO 系列的实时检测特性的同时,通过引入多尺度检测、更深的网络架构和其他优化,提高了对复杂场景和不同尺寸目标的检测能力。

您可能感兴趣的与本文相关的镜像

Yolo-v5

Yolo-v5

Yolo

YOLO(You Only Look Once)是一种流行的物体检测和图像分割模型,由华盛顿大学的Joseph Redmon 和Ali Farhadi 开发。 YOLO 于2015 年推出,因其高速和高精度而广受欢迎

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值