GBDT 是一种基于决策树的集成学习方法,其主要思想是通过串行训练多个决策树模型,并利用梯度提升的方法逐步改进模型性能。具体而言,GBDT 通过不断迭代训练决策树,在每一轮迭代中,根据上一轮模型的残差来训练新的决策树,然后将新树的预测结果与前几轮模型的预测结果相加,以逐步减小预测误差。
在训练过程中,GBDT 采用梯度下降的方法来最小化损失函数,以找到最优的模型参数。通常使用的损失函数包括平方损失函数(用于回归任务)和对数损失函数(用于分类任务)等。通过不断迭代优化模型,在每一轮迭代中都会产生一个新的弱学习器(决策树),最终将这些弱学习器组合成一个强大的集成模型。
GBDT 具有很好的鲁棒性和泛化能力,能够处理高维度、稀疏数据,并且在许多实际应用中取得了很好的效果,如点击率预测、信用风险评估、推荐系统等。然而,需要注意的是,GBDT 的训练过程是串行的,因此相对于一些并行化的集成方法,其训练速度可能较慢。