Yoggy老师教你相似度计算

1. 特征提取和归一化

首先,需要对每个商品的标题、品牌、分类等信息进行特征提取和归一化处理。可以考虑以下步骤:

  1. 分词:对商品标题进行分词,提取关键字。
  2. 品牌匹配:品牌信息通常是比较明确的,可以单独提取并标准化。
  3. 分类匹配:同样,分类信息也可以单独提取并标准化。
  4. 特征向量化:将分词后的标题、品牌和分类信息转化为特征向量。可以使用TF-IDF、Word2Vec等方法。

2. 相似度计算

为了识别同款商品,需要计算每个商品之间的相似度。可以采用以下方法:

  1. 文本相似度计算:使用Jaccard相似系数、Cosine相似度等方法计算标题的相似度。
  2. 品牌和分类匹配:品牌和分类信息通常比较标准化,可以通过直接匹配的方式计算相似度。

3. 聚类算法

为了高效地将同款商品分组,可以采用聚类算法:

  1. 基于密度的聚类算法:DBSCAN(Density-Based Spatial Clustering of Applications with Noise)适合于不规则形状的簇,可以很好地处理高维数据和噪声。
  2. 层次聚类:层次聚类方法(如Agglomerative Clustering)可以创建嵌套的簇层次,适合处理小规模数据。
  3. K-Means:适用于已知簇数的
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值