1. 特征提取和归一化
首先,需要对每个商品的标题、品牌、分类等信息进行特征提取和归一化处理。可以考虑以下步骤:
- 分词:对商品标题进行分词,提取关键字。
- 品牌匹配:品牌信息通常是比较明确的,可以单独提取并标准化。
- 分类匹配:同样,分类信息也可以单独提取并标准化。
- 特征向量化:将分词后的标题、品牌和分类信息转化为特征向量。可以使用TF-IDF、Word2Vec等方法。
2. 相似度计算
为了识别同款商品,需要计算每个商品之间的相似度。可以采用以下方法:
- 文本相似度计算:使用Jaccard相似系数、Cosine相似度等方法计算标题的相似度。
- 品牌和分类匹配:品牌和分类信息通常比较标准化,可以通过直接匹配的方式计算相似度。
3. 聚类算法
为了高效地将同款商品分组,可以采用聚类算法:
- 基于密度的聚类算法:DBSCAN(Density-Based Spatial Clustering of Applications with Noise)适合于不规则形状的簇,可以很好地处理高维数据和噪声。
- 层次聚类:层次聚类方法(如Agglomerative Clustering)可以创建嵌套的簇层次,适合处理小规模数据。
- K-Means:适用于已知簇数的