在某些情况下,二重积分在直角坐标系下的计算比较复杂,尤其是当积分区域为圆形或其他以原点为中心的区域时,使用极坐标来计算二重积分会更为方便。极坐标系将平面上的点用极径 ( r ) 和角度 ( \theta ) 来表示,而不是 ( x ) 和 ( y ) 坐标。在极坐标系下,二重积分的计算有助于简化这些区域的积分。
1. 极坐标系简介
在极坐标系中,一个点 ( (x, y) ) 由极径 ( r ) 和极角 ( \theta ) 来表示,满足以下关系:
- ( x = r \cos\theta )
- ( y = r \sin\theta )
其中,( r ) 是点到原点的距离,( \theta ) 是点与正 ( x )-轴之间的角度。极坐标系常用于描述具有圆形或旋转对称性的区域。
2. 极坐标下的二重积分
在极坐标系下,二重积分的计算需要对原有的面积元素 ( dx,dy ) 进行转换。面积元素 ( dA ) 在极坐标系下变为:
d A = r d r d θ dA = r \, dr \, d\theta dA=rdrdθ
因此,二重积分的表达式从 ( \iint_D f(x, y) , dx , dy ) 变为:
∬ D f ( x , y ) d x d y = ∬ D f ( r , θ ) r d r d θ \iint_D f(x, y) \, dx \, dy = \iint_D f(r, \theta) \, r \, dr \, d\theta ∬Df(x,y)dxdy=∬Df(r,θ)rdrdθ
其中 ( f(x, y) ) 需要转换为极坐标下的形式 ( f(r, \theta) ),并且 ( r ) 出现在积分中。
3. 计算过程
1. 确定积分区域
首先,我们需要明确积分区域 ( D ) 的形状和范围,通常是一个圆形或某个扇形区域。确定 ( r ) 和 ( \theta ) 的范围:
- 对于圆形区域,( r ) 的范围通常是从 0 到某个常数 ( r_0 ),而 ( \theta ) 的范围通常是从 ( 0 ) 到 ( 2\pi )(或其他角度区间,取决于问题的要求)。
- 对于扇形区域,( r ) 依赖于 ( \theta ),( r ) 的范围可能是从 0 到某个函数 ( r(\theta) )。
2. 设定二重积分表达式
根据极坐标下的积分区域和被积函数,设定二重积分的表达式。一般情况下,先对 ( r ) 积分,再对 ( \theta ) 积分(或反之)。
∬ D f ( x , y ) d x d y = ∫ θ 1 θ 2 ( ∫ r 1 r 2 f ( r , θ ) r d r ) d θ \iint_D f(x, y) \, dx \, dy = \int_{\theta_1}^{\theta_2} \left( \int_{r_1}^{r_2} f(r, \theta) \, r \, dr \right) d\theta ∬Df(x,y)dxdy=∫θ1θ2(∫r1r2f(r,θ)rdr)dθ
3. 逐步计算积分
根据设定的积分范围和被积函数,计算内外积分。
4. 例题:计算圆形区域内的面积
假设我们要求单位圆 ( D ) 内的面积,区域 ( D ) 是一个圆形,半径为 1,位于原点。
步骤 1:设定二重积分表达式
由于我们要求的是面积,函数 ( f(x, y) = 1 )。在极坐标下,二重积分的表达式为:
∬ D 1 d x d y = ∫ 0 2 π ( ∫ 0 1 r d r ) d θ \iint_D 1 \, dx \, dy = \int_0^{2\pi} \left( \int_0^1 r \, dr \right) d\theta ∬D1dxdy=∫02π(∫01rdr)dθ
步骤 2:计算内层积分
首先对 ( r ) 积分:
∫ 0 1 r d r = r 2 2 ∣ 0 1 = 1 2 \int_0^1 r \, dr = \frac{r^2}{2} \Big|_0^1 = \frac{1}{2} ∫01rdr=2r2 01=21
步骤 3:计算外层积分
然后对 ( \theta ) 积分:
∫ 0 2 π 1 2 d θ = 1 2 ⋅ 2 π = π \int_0^{2\pi} \frac{1}{2} \, d\theta = \frac{1}{2} \cdot 2\pi = \pi ∫02π21dθ=21⋅2π=π
因此,单位圆的面积为 ( \pi )。
5. 例题:计算扇形区域的面积
考虑一个扇形区域 ( D ),它的半径为 2,角度范围为 ( 0 \leq \theta \leq \frac{\pi}{2} )。
步骤 1:设定二重积分表达式
我们要求的是扇形区域的面积,因此函数 ( f(x, y) = 1 )。在极坐标下,二重积分的表达式为:
∬ D 1 d x d y = ∫ 0 π 2 ( ∫ 0 2 r d r ) d θ \iint_D 1 \, dx \, dy = \int_0^{\frac{\pi}{2}} \left( \int_0^2 r \, dr \right) d\theta ∬D1dxdy=∫02π(∫02rdr)dθ
步骤 2:计算内层积分
首先对 ( r ) 积分:
∫ 0 2 r d r = r 2 2 ∣ 0 2 = 4 2 = 2 \int_0^2 r \, dr = \frac{r^2}{2} \Big|_0^2 = \frac{4}{2} = 2 ∫02rdr=2r2 02=24=2
步骤 3:计算外层积分
然后对 ( \theta ) 积分:
∫ 0 π 2 2 d θ = 2 ⋅ π 2 = π \int_0^{\frac{\pi}{2}} 2 \, d\theta = 2 \cdot \frac{\pi}{2} = \pi ∫02π2dθ=2⋅2π=π
因此,扇形区域的面积为 ( \pi )。
6. 总结
在极坐标系下,二重积分的计算比直角坐标系下更加方便,尤其是对于涉及圆形或扇形区域的问题。通过转换为极坐标,二重积分的面积元素变为 ( r , dr , d\theta ),从而简化了积分的计算。计算步骤包括:
- 明确积分区域,确定 ( r ) 和 ( \theta ) 的范围。
- 将被积函数转换为极坐标形式。
- 逐步计算内外积分。
极坐标系下的二重积分广泛应用于涉及对称区域的问题,如圆形、扇形等。