高数_第3章重积分_在极坐标下计算二重积分

一  在极坐标定下限, 上限是怎么确定的?

注意:  极坐标下不需要交换积分次序

1. 在计算极坐标的重积分是, 都是写成 

∫dθ ∫f(x,y) rdr  形式,  就是说dθ 写在前面

2. 由二重积分的定义,可得出极坐标下的二重积分为

83d6f9653d834a85ada2f17507748a35.png

 也就是说,在极坐标下,被积函数中的x,  y分别用 x = rcosθ,  y= rsinθ 去代换, 将dσ用dσ=rdrdθ去代换。

3. 接下来看例题

例1:  计算二重积分 8c987ef88c5646389605419fac80816d.png, 其中D为圆x²  + y² = 1及 x² + y² = 4与直线y=x,  y=0所围的第一象限的区域。 

解:将极坐标变换 x = rcosθ, y=rsinθ 代入到边界方程中去, 边界 x²  + y²  = 1及 x²  + y² =4在极坐标下的方程分别为 r=1 和  r=2,

它们依次是近边界和远边界, 直线y=x 转变为rsinθ = rcosθ, 则 rsinθ/rcosθ = tanθ = 1, 所以θ = 

π/4;

直线y=0即为rsinθ = 0,  所以θ =0。

沿着与x轴的夹角为θ的射线, 从近边界r=1出发的箭头穿过积分区域指向远边界r=2,  且当

θ从0到 π/4时, 这此箭头扫过了整个积分区域,如图3-26. 于是在极坐标下,

c3dc92e1e8f345d395af85ebb661fe54.jpeg

5f791b3c3de44d3aa8e13695d319cac1.jpeg

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

接下来,我们看一个例题

126a93ed5d35476bac71fc8d763d8224.png

解:积分区域D如图3-17所示

a534df6eedc04dff9ab0771a9cfa343c.jpeg  3896eb5a0d354e11ae2e6b3114e935ce.jpeg

 

 

 

如果积分区域D 由圆 或者 f(x, y)  x² +² , 可以用极坐标来计算重积分

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值