SORT 和 DeepSORT 算法简介
SORT(Simple Online and Realtime Tracking) 和 DeepSORT 是两种常用的多目标跟踪(MOT)算法,它们都基于目标检测框,通过关联检测框来维持物体的身份一致性,实现实时目标跟踪。SORT 是一个简单而高效的在线实时跟踪算法,而 DeepSORT 是其扩展,加入了基于深度学习的外观特征,提高了在复杂场景中的跟踪性能,尤其是在处理目标遮挡、相似物体和外观变化时。
1. SORT(Simple Online and Realtime Tracking)
1.1 SORT 的概述
SORT(Simple Online and Realtime Tracking)是一种高效的实时多目标跟踪算法,旨在通过结合卡尔曼滤波(Kalman Filter)和匈牙利算法来跟踪多个物体。SORT 主要用于实时场景中,能够处理多个目标,并为每个目标分配一个唯一的 ID。
SORT 的核心思想是:
- 卡尔曼滤波:用来预测每个目标的运动状态(如位置和速度),为目标分配一个运动模型。卡尔曼滤波在每一帧之间估计目标的状态,使得目标的运动能够被精确预测。
- 匈牙利算法:用于解决匹配问题,即在每一帧中,如何将检测到的目标与上一帧中的目标进行匹配,找到最优的对应关系。
1.2 SORT 的工作原理
-
目标检测:首先,通过目标检测算法(如 YOLO、SSD 等)检测当前帧中的所有物体,并获得每个物体的边界框(bounding box)。
-
卡尔曼滤波预测:对于每个目标,通过卡尔曼滤波器预测其在当前帧的位置,利用上一帧的状态估计值和运动模型来进行预测。
-
匈牙利算法匹配:通过匈牙利算法,将当前帧的检测框与上一帧的目标框进行匹配,计算匹配代价,寻找代价最小的匹配对。
-
更新跟踪状态:对于每个匹配到的目标,更新其状态(如位置、速度等)。对于新出现的目标,分配新的 ID。对于消失的目标,移除其 ID。
-
输出结果:在每一帧结束时,输出当前目标的边界框和对应的 ID。
1.3 SORT 的优缺点
-
优点:
- 算法简单、实现容易,适合实时目标跟踪。
- 由于基于卡尔曼滤波和匈牙利算法,计算复杂度较低,可以实时处理视频流。
-
缺点:
- 仅使用运动信息来进行目标关联,无法处理目标之间的外观相似性问题。
- 在遮挡、重叠或目标外观变化较大的情况下,容易导致跟踪失败。
2. DeepSORT(Deep Learning-based SORT)
2.1 DeepSORT 的概述
DeepSORT 是对 SORT 算法的改进和扩展,它通过引入深度学习的外观特征来辅助目标关联,从而克服了 SORT 在目标遮挡和相似物体处理上的局限性。DeepSORT 在传统的 SORT 基础上,增加了基于 深度卷积神经网络(CNN)提取目标的外观特征,用以增强目标之间的关联能力。
2.2 DeepSORT 的工作原理
DeepSORT 的工作原理与 SORT 类似,但在以下方面有所不同:
-
目标检测:同样,DeepSORT 依赖于外部目标检测算法(如 YOLO、SSD)来检测视频中的目标,获取目标的边界框。
-
外观特征提取:DeepSORT 使用预训练的深度学习模型(通常是一个卷积神经网络)来提取每个目标的外观特征。这些特征用于区分外观相似的目标。例如,DeepSORT 使用 ReID(Re-identification) 网络提取每个目标的独特外观特征,这些特征与目标的运动信息结合起来,能提供更精确的匹配。
-
卡尔曼滤波预测:与 SORT 一样,DeepSORT 使用卡尔曼滤波来预测目标的运动状态。
-
外观与运动信息结合:DeepSORT 结合了卡尔曼滤波的运动估计和外观特征的相似度计算,通过计算目标外观特征之间的欧几里得距离或余弦相似度来辅助目标关联。通过这种方式,DeepSORT 可以有效区分相似目标,并提高在遮挡或相似物体情况下的跟踪精度。
-
匈牙利算法匹配:DeepSORT 使用匈牙利算法来匹配当前帧的检测框与上一帧的目标。匹配的代价不仅依赖于位置的重叠(通过 IoU 测量),还结合了外观特征的相似度。
-
更新跟踪状态:在完成匹配后,更新目标的状态并保持其 ID。对于新目标,分配新的 ID;对于失去匹配的目标,保持其 ID,直到丢失时间超过阈值。
2.3 DeepSORT 的优缺点
-
优点:
- 引入深度学习的外观特征,增强了对外观相似物体的区分能力。
- 相较于 SORT,能够更好地处理目标遮挡、相似物体以及外观变化的情况。
- 在高密度目标场景中表现出色,减少了错误匹配的发生。
-
缺点:
- 由于需要额外的计算来提取目标的外观特征,因此计算开销较大,可能无法满足极其实时的场景。
- 需要大量的数据进行训练,以获得良好的外观特征。
3. DeepSORT 与 SORT 的对比
特性 | SORT | DeepSORT |
---|---|---|
基础算法 | 卡尔曼滤波 + 匈牙利算法 | 卡尔曼滤波 + 匈牙利算法 + 深度学习特征提取 |
外观特征 | 仅依赖运动信息 | 结合了深度学习的外观特征 |
性能 | 快速,适用于简单场景 | 在复杂场景下表现更好,适用于目标遮挡和外观相似情况 |
计算开销 | 低,适合实时应用 | 较高,需要额外的计算资源提取外观特征 |
适用场景 | 适用于目标较少、运动规律的场景 | 适用于目标密集、遮挡严重、外观相似的场景 |
4. 应用领域
SORT 和 DeepSORT 广泛应用于多目标跟踪领域,包括:
- 自动驾驶:用于实时跟踪车辆、行人、交通标志等。
- 视频监控:在监控视频中跟踪可疑目标,识别并追踪不同行为。
- 机器人:用于导航和环境感知,跟踪多个目标并避免碰撞。
- 无人机跟踪:在监控任务中,使用 DeepSORT 跟踪地面目标或空中目标。
5. 总结
- SORT 是一种简单而高效的多目标跟踪算法,适用于实时场景,能够处理基本的目标跟踪任务,但对于复杂的场景(如目标遮挡、相似物体等)表现较差。
- DeepSORT 是 SORT 的改进版本,通过引入基于深度学习的外观特征来增强目标之间的区分能力,特别适合处理遮挡、相似物体和外观变化较大的复杂场景。
DeepSORT 通过结合运动信息和深度特征,能显著提高多目标跟踪算法的精度,在各种实际应用中具有很强的竞争力。