基于SeaFormer的YOLOv8性能提升策略—轻量高效注意力模块Sea_AttentionBlock在语义分割中的应用研究

近年来,随着深度学习在计算机视觉领域的广泛应用,目标检测任务的精度和效率不断被推上新的高度。YOLO 系列作为实时检测算法的代表,在工业界和学术界都具有广泛影响力。而 YOLOv8 更是在前代基础上进一步优化了模型结构,提升了检测性能。然而,在面对小目标检测任务时,YOLOv8 仍然存在一定的局限性。为了解决这一问题,本文引入一种来自 ICLR 2023 的轻量级语义分割网络 SeaFormer 中的核心模块 —— Sea_AttentionBlock ,并将其与 YOLOv8 中的 C2f 模块相结合,提出了一种新的改进方案,显著提升了模型在多个数据集上的检测精度,特别是在小目标场景下效果尤为突出。

1. 背景动机

随着 Vision TransformerViT)在计算机视觉领域逐步超越传统 CNN 模型,在图像分类、目标检测、语义分割等任务中展现出卓越性能,其应用前景日益广泛。然而,ViT 类模型通常伴随着高昂的计算成本和内存需求,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Stara-AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值