- Matplotlib是一个Python 2D绘图库,Matplotlib试图让简单的事情变得更简单,让无法实现的事情变得可能实现。 只需几行代码即可生成 图,直方图,条形图,散点图等。支持python、numpy、pandas基本数据结构,运营高效且有较丰富的图表库。可视化是在整个数据挖掘的关键辅助工具,可以清晰的理解数据,从而调整我们的分析方法。能将数据进行可视化,更直观的呈现;使数据更加客观、更具说服力。
- 本博客主要展示基本的常见图表制作及图表样式修改,图表:折线图、饼图、散点图、条形图、直方图、热力图、箱线图。
- 下面这张图向我们展示了一张图表当中的所有可以设置的属性,以此美化图表。借着折线图的制作详细展示这些属性的修改。
- matplotlib官网:👉点这里

图表样式及属性简介
import matplotlib.pyplot as plt
import numpy as np
plt.rcParams['font.sans-serif'] =['Microsoft YaHei']
plt.rcParams['axes.unicode_minus'] = False
x = [1.3,2.5,3.7,5.7,8.9,9.5]
y = [2.5,3.5,4.5,6.8,7.9,9.9]
plt.figure(figsize=(10,4))
plt.plot(x,
y,
color='c',
linewidth=5,
linestyle='--',
marker='o',
markeredgecolor='red',
markeredgewidth=1,
markersize=10,
label='我是图例'
)
plt.title('我是标题',fontsize=20,color='red',loc='left')
plt.xlabel('我是x轴',fontsize=15,color='blue',labelpad=-25,position=(1.05,0))
plt.ylabel('我是y轴',fontsize=15,color='blue',labelpad=10,position=(0,0.9))
plt.xticks(x,[f'x_{
i}' for i in range(len(x))],size=12)
plt.yticks(y,["%.2f" %i for i in y],size=11)
plt.ylim([0,15])
plt.legend(loc='upper center')
ax = plt.gca()
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
for x,y in zip(x,y):
plt.text(x-0.1,y+0.5,y)
plt.annotate('我在学习python画图呢!',xytext = (6,4),xy = (9,10), arrowprops = dict(facecolor = 'blue', shrink = 0.1))
plt.scatter(9,10,s=100,c='m')
plt.show()

1、线linestyle和点marker的样式
线样式 |
描述 |
‘-’ |
实线样式 |
‘- -’ |
短横线样式 |
‘-.’ |
点划线样式 |
‘:’ |
虚线样式 |
点样式 |
描述 |
点样式 |
描述 |
‘1’ |
下箭头标记 |
‘.’ |
点标记 |
‘2’ |
上箭头标记 |
‘o’ |
圆标记 |
‘3’ |
左箭头标记 |
‘x’ |
X 标记 |
‘4’ |
右箭头标记 |
‘^’ |
正三角标记 |
‘s’ |
正方形标记 |
‘v’ |
倒三角标记 |
‘p’ |
五边形标记 |
‘<’ |
左三角标记 |
‘D’ |
菱形标记 |
‘>’ |
右三角标记 |
‘+’ |
加号标记 |
‘_’ |
水平线标记 |
2、标题 plt.title()
plt.title(label,
loc='',
fontsize='',
color='',
pad=
)
<