一、基础理论学习
(一)数学知识
- 微积分与线性代数:掌握极限、导数、积分等微积分基础概念,理解矩阵运算、线性方程组求解等线性代数内容,为后续建模中的函数优化、数据降维等操作提供理论支持。
- 概率与数理统计:学习概率分布、参数估计、假设检验等知识,用于处理不确定性数据,如在预测模型、风险评估中广泛应用。
- 运筹学基础:了解线性规划、整数规划、动态规划等优化方法,可用于解决资源分配、生产调度等实际问题。
(二)编程语言
- Python:学习基本语法、数据结构(列表、字典等)、控制流语句等。掌握NumPy、Pandas库进行数据处理,Matplotlib、Seaborn库进行数据可视化。
- MATLAB:熟悉矩阵运算、函数编写、绘图等基本操作。掌握优化工具箱、统计工具箱等用于建模求解。
二、建模方法学习
(一)常见模型
- 预测模型:学习线性回归、逻辑回归、决策树、随机森林、支持向量机等用于预测数值或分类数据。
- 优化模型:深入研究线性规划、非线性规划、整数规划在资源优化配置中的应用。
- 聚类与分类模型:了解K - means聚类、层次聚类、主成分分析(PCA)等用于数据分