目录
一 、研究背景与意义
1.研究背景
冷链物流是一个专业的物流领域,它确保冷链产品在整个供应链过程中始终处于规定的温度环境中。这一过程涵盖了初加工、储存、运输、流通加工、销售和配送等各个环节。这就意味着它在大部分运输中起到了至关重要的作用,然而因为它需要维持恒定的温度,以确保产品的质量和安全性,使得它成为一个流通成本占总成本比例非常高的特殊供应链。正因为如此,随着人们生活水平和对产品品质要求的提高,带动了对冷链物流配送的关注度,如何能够更好的使冷链物流更快的到达提供了更多的可能
2.研究意义
首先,通过优化配送路径通过优化配送路径,可以减少冷链物流车辆运输的时间和距离,提高配送效率,进而能够减少冷链物流的成本。车辆行驶时间跟停留时间的减少可以相应的降低燃油消耗和二氧化碳的排放,符合绿色物流的发展趋势,响应了国家的绿色地毯行动。因为是冷链物流,那么运输的产品往往是对品质要求比较严格的,而减少了运输的时间,就能够进一步保证了产品的品质,减少在运输途中的损耗,也就能更好的满足用户的需求,总的来说,无论是在理论还是实际生活中,冷链物流配送路径优化都起到了重要的作用。
二、国内外研究现状
1.国外研究
针对目前的冷链物流管理和配送路径普遍面临着环境污染、成本高等问题,提出了一种改进的烟花-人工蜂群优化配送路径,用邻域搜索对人工蜂群进行改进。其次,对于最优解,采用烟花爆炸算子进行最终结果搜索;Wei Liu利用改进的遗传算法( GA ),研究了生鲜农产品冷链配送的相关费用,并构建了配送路径优化模型;Meiling He等引入一个新的带软时间窗的电动汽车路径问题,并结合2 - opt算法提出了一种改进的蚁群优化算法来进行解决问题;Lina Guo等从注重环境保护和节约成本入手,利用K-means算法对物流区域进行聚类和划分,然后利用优化的模拟退火算法对物流成本和资源进行控制和利用;Gaoyuan Qin等以降低能耗和碳排放为目标,提出了一个综合VRP - CSC模型(考虑客户满意度和碳排放的冷链物流车辆路径问题)来优化配送路径。
2.国内研究
司莹丽提出基于改进鲸鱼算法的生鲜农产品物流配送路径优化方法,通过构建指标体系与目标函数,确保优化结果准确实用,后基于改进鲸鱼算法构建优化模型,从而实现路径优化;张岗旨在通过系统分析冷链物流的构成要素及当前配送过程中存在的不足,提出有效的优化策略;王小荣等基于实时交通数据和拥堵信息,结合实时A*启发式搜索算法,通过构建交通路网图和模拟运输任务,系统考虑了拥堵情况、车辆容量、以及需求点时间窗约束等多个因素,以最小化总运输成本为目标,合理分配派送车辆和路径,满足多个需求点的货物运输需求;张勇等通过构建了配送路径优化模型,选用遗传算法,使用MATLAB求解模型,得到最优配送路径方案;墨祥磊针对配送环节存在配送成本高且车辆载重率低、未能满足客户时间窗要求、对碳排放的关注程度有限等问题,综合考虑固定成本、运输成本、制冷成本、货损成本、时间惩罚成本和碳排放成本六项成本,以总配送成本最小为目标函数,构建生鲜农产品冷链物流配送路径优化模型。并基于模型特点,设计改进的遗传算法。
二、研究内容
1.主要研究内容
本文的主要研究内容是基于遗传算法的生鲜农产品物流配送路径优化。首先对冷链物流和车辆路径问题相关理论进行研究,确定了本研究要采用遗传算法求解问题。然后对车辆路径优化相关问题进行定义,同时考虑其中的成本,以单配送中心,多配送地点为基础构建农产品冷链物流路径优化模型,并且设定客户满意度等约束条件,将之转化为数学模型,运用遗传算法进行设计并求解。
2.研究方法
(1)文献研究法
主要通过相关网站、学校图书馆等多渠道对国内外相关文献进行梳理和总结,掌握生鲜弄个产品冷链物流理论知识以及在实际运输中具体的发展过程、阶段,并对未来的研究走向做出一定的预测,对于实现冷链物流模型以及相关算法的改进起到一定的作用。
(2)调查法
通过对一些相关企业的深入走访,与员工等进行详细的交流询问,收集并记录企业相关的数据信息,能对实际情况有差不多的了解,考虑在配送路径中可能会出现的状况
(3)定量分析法
在构建模型阶段采用定量分析法,将冷链配送过程中产生的相关成本等作为优化目标函数,构造生鲜农产品冷链物流配送路径优化模型
3.技术路线
技术路线如图1所示
4.实施方案
1.采集A配送公司的数据,包括配送车油耗、配送车辆费用、配送车承重,配送车的平均运输速度以及配送中心到各个配送点的距离
2.模型构建:考虑单配送中心多配送点,目标是在容量和时间约束条件下,综合考虑车辆固定成本、货损成本,制冷成本以及时间惩罚成本
3.算法设计:因为传统的遗传算法会出现收敛慢和早熟的情况,所以要对遗传算法进行改进
4.模型求解:将设计好的改进遗传算法带入模型求解
5.对比验证:再将传统的遗传算法带入模型求解,与改进后的遗传算法求解的结果进行对比,证明改进后的遗传算法用来求解更优
5.可行性分析
1.技术可行性:遗传算法等智能算法在路径优化领域已有广泛应用,技术成熟度高。大数据分析技术能够提供丰富的历史数据支持,为算法优化提供有力保障。
2.经济可行性:优化后的配送路径能够显著降低物流成本,提高物流效率。系统开发和维护成本相对较低,且能够带来长期的经济效益。
3.社会可行性:优化后的冷链物流配送路径能够减少交通拥堵和环境污染,符合绿色物流的发展趋势。提高生鲜农产品的配送效率和质量,有助于提升消费者的满意度和忠诚度。
4.政策可行性:国家对冷链物流产业给予政策支持,鼓励技术创新和产业升级。相关政策法规的完善为冷链物流产业的发展提供了良好的政策环境。
三、参考文献
[1]司莹丽.应用改进鲸鱼算法的生鲜农产品冷链物流配送路径优化研究[J].无线互联科技,2024,21(18):101-103.
[2]张岗.生鲜农产品冷链物流的共同配送路径与优化[J].中国航务周刊,2024,(45):64-66.
[3]王小荣,张玉召.基于实时A*算法的冷链物流配送路径优化[J].武汉理工大学学报(交通科学与工程版),2024,48(05):852-857.
[4]张勇,贺国先.基于遗传算法的生鲜水果冷链物流配送路径优化研究[J].中国储运,2024,(07):96-97.DOI:10.16301/j.cnki.cn12-1204/f.2024.07.122.
[5]墨祥磊.N公司生鲜农产品冷链物流配送路径优化研究[D].浙江大学,2024.DOI:10.27461/d.cnki.gzjdx.2024.000401.
[6]张富慧.基于改进遗传算法的生鲜农产品冷链物流低碳配送路径优化研究[D].山西财经大学,2024.DOI:10.27283/d.cnki.gsxcc.2024.001293.
[7]刘天麒,吝永红.基于改进遗传算法的冷链物流配送路径优化[J].全国流通经