学习经验分享【26】论文写作画图方法(持续更新)

文章介绍了图表在论文投稿中的重要性,推荐使用Excel进行对比和消融实验的图表制作,利用PPT绘制网络结构图,以及Draw和Visio作为其他绘图工具。这些方法能帮助提升论文的视觉效果和理解度,从而增加被录用的可能性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

写作前面:论文投稿能否成功,图表作为比较直观的展现,起着关键的作用,图表丰富规范好看,一定程度上能够吸引编辑和审稿人的眼球,提升录用概率。就跟人的形象一样,形象好第一印象就会好,评价也不会很差。所以分享画图的方法。助力科研。有需要论文写作指导的朋友可以关注私信我哦。

在目标检测论文中,图表是非常重要的部分,它们能够直观展示你的方法、实验结果以及改进效果。以下是几类在目标检测论文中常用且重要的图表类型。

 一、Excel表格画图(消融实验和对比实验部分建议用)

Excel表格可以简单的画折线图等。对比实验或者消融实验,可以用这种方法,本人在大论文中也采用这样的方法,盲省分数会增加,提高顺利通过的概率,增加和丰富论文的内容。如下表格,可以得到如下所示,Excel中有很多图,有柱状图、折线图、箱型图等等,我主要用比较常见的折线图和柱状图为例,以下为草图,可以再进行修饰一下。朋友们可以根据自己的情况再进行丰富改进完善创新。

这样就可以对着折线图再输出一波内容,同时也更加方便审稿人对文章进行理解,让审稿人觉得你比其他人更加用心中稿意愿更加强烈,从而提升中稿的成功率。

二、PPT做图(网络结构图绘制)

采用PPT画网络结构图,本人认为是比较快速的方法,因为ppt每个电脑都有。有朋友也问到如何生成图片从ppt中,可以全选后另存为图片即可。另外本人有网络结构图绘制等ppt模板,有需要的朋友可关注我私信后获取。

三、draw做图 

GitHub上有个科研绘图软件,这个画图也可以的。画结构图等也很方便。

四、Visio做图

visio画图可能没有那么多颜色花里胡哨的感觉,不过也是比较方便画流程图,并且可以集成到word里面,随时可以点击文档中的图进行修改,不好的地方是需要安装visio同时制作的图占内存会比较大。


1. 模型架构图
目的:直观展示你的模型结构和创新点。  
内容:
- 总体架构设计,显示输入、特征提取、融合、预测等模块。
- 突出关键创新模块,比如新的特征融合方法、损失函数设计等。
- 使用颜色或标注区分模块之间的关系。

工具推荐:  
- Visio、PowerPoint、draw.io 或 PyTorch's `torchviz`。

2. 数据集样本和标注展示
目的:展示你使用的数据集特点,比如类别分布、不平衡性或复杂场景。  
内容:
- 数据集样本图片,展示检测目标的多样性(如遮挡、尺度变化、复杂背景)。
- 标签分布的柱状图或饼状图,显示类别数量是否均衡。

3. 检测效果可视化
目的:证明你的模型在实际场景中的表现。  
内容:
- 展示几张典型的检测结果图,显示检测框(bounding box)、类别、置信度等信息。
- 涉及挑战性的场景,如小目标、遮挡、多目标密集分布。
- 对比基线模型和你提出方法的检测结果。

建议:多选择对比图(Baseline vs Proposed Method)。

4. 消融实验分析图
目的:证明各模块或设计的有效性。  
内容:
- 使用柱状图、折线图或表格展示消融实验结果。
- 显示不同模块(如损失函数、特征融合模块)对性能(如mAP、FPS)的提升。

5. 性能对比图
目的:展示你的方法相对于其他方法的优势。  
内容:
- 与当前 SOTA 方法(如 YOLOv8、RetinaNet 等)的性能对比图表。
- 通常包括:
  - 精度指标(mAP、AP50、AP75)。
  - 推理速度(FPS)。
  - 模型大小(参数量或 FLOPs)。
- 使用折线图或柱状图直观展示你的方法的平衡性(例如精度 vs 速度)。

6. 消耗 vs 精度的折线图
目的:展示模型在效率和效果之间的权衡。  
内容:
- 横轴:推理时间(ms)、参数量或 FLOPs。
- 纵轴:检测精度(mAP)。
- 对比其他方法,突出你的模型在效率和精度上的平衡点。

7. 错误分析图
目的:分析模型检测错误的原因。  
内容:
- 绘制混淆矩阵,展示不同类别间的误分类情况。
- 使用饼状图或柱状图展示错误类型比例(如误检、漏检、小目标错误)。

8. 训练过程曲线
目的:显示训练收敛性和优化效果。  
内容:
- 损失函数值(loss)随 epoch 变化的曲线。
- 验证精度(mAP 或 AP)的变化趋势。

9. 创新模块的可视化
目的:验证你提出模块的作用。  
内容:
- 特征图的可视化(如卷积后的激活图,展示模型关注区域)。
- 显示加入模块前后特征图的差异(如更清晰的目标边缘或更集中注意力)。

10. 推理过程时间分析
目的:展示模型的实时性。  
内容:
- 用条形图或折线图展示各模块(如特征提取、检测头)的时间占比。
- 对比不同输入分辨率或硬件(如 GPU vs CPU)下的推理速度。

额外建议:
1. 美观性:所有图表必须清晰、整洁,标注准确,配色和布局合理。
2. 对比清晰:如果是对比图,确保基线模型和你的模型之间的差异明显。
3. 自定义注释:在每张图中加注释,突出创新点或优点。

### 如何绘制机器学习消融研究结果图 #### 准备工作 为了创建有效的消融实验结果图表,首先要确保数据已经被适当地收集并整理成适合可视化的形式。通常情况下,这涉及到记录每次改变特定组件(如网络层、正则化参数等)后的模型表现指标。 #### 数据结构设计 建议将不同配置下的评估分数存储在一个Pandas DataFrame中,其中每一列代表一种超参数设置或不同的子模型版本,而行则是对应的性能度量值,比如准确率、F1得分或其他相关评价标准[^1]。 #### 绘制折线图展示变化趋势 当比较多个变量的影响时,可以采用多条折线来表示各个因素单独作用下目标函数的变化情况: ```python import matplotlib.pyplot as plt import seaborn as sns sns.set_theme(style="darkgrid") # 假设df是一个包含了所有试验结果的DataFrame对象 plt.figure(figsize=(10, 6)) for column in df.columns: sns.lineplot(data=df[column], label=column) plt.title('Ablation Study Results') plt.xlabel('Experiment Index') plt.ylabel('Performance Metric Value') plt.legend() plt.show() ``` 这段代码会生成一张带有图例说明各组别的折线图,直观地显示出每种条件下系统的改进程度[^2]。 #### 制作柱状对比图强调差异 如果想要突出某些具体调整带来的显著效果,则可以选择柱形图来进行两两之间的直接对照分析: ```python fig, ax = plt.subplots() bar_width = 0.35 index = np.arange(len(df)) opacity = 0.8 rects1 = plt.bar(index, df['baseline'], bar_width, alpha=opacity, color='b', label='Baseline') rects2 = plt.bar(index + bar_width, df['modified_model'], bar_width, alpha=opacity, color='g', label='Modified Model') plt.xlabel('Test Cases') plt.ylabel('Scores') plt.title('Comparison between Baseline and Modified Models') plt.xticks(index + bar_width / 2, ('Case A', 'Case B')) plt.legend() plt.tight_layout() plt.show() ``` 上述脚本通过两个相邻的直方条展示了基础版与修改后模型在同一测试集上的成绩差别,有助于读者快速抓住重点信息。 #### 添加误差棒提高可信度 考虑到实际应用环境中可能存在随机波动,在最终提交的研究报告里加入置信区间或者均值±标准差的形式能够增强结论说服力: ```python means = [mean_baseline, mean_modified] std_devs = [std_baseline, std_modified] fig, ax = plt.subplots() ax.errorbar(['Baseline', 'Modified'], means, yerr=std_devs, fmt='-o') ax.set_ylabel('Average Score ± Std Deviation') ax.set_title('Model Performance with Error Bars') plt.show() ``` 这种方法不仅体现了统计学意义上的准确性,同时也让审稿人更容易接受所得出的观点。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

人工智能算法研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值