学习经验分享【26】论文写作画图方法(持续更新)

文章介绍了图表在论文投稿中的重要性,推荐使用Excel进行对比和消融实验的图表制作,利用PPT绘制网络结构图,以及Draw和Visio作为其他绘图工具。这些方法能帮助提升论文的视觉效果和理解度,从而增加被录用的可能性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

写作前面:论文投稿能否成功,图表作为比较直观的展现,起着关键的作用,图表丰富规范好看,一定程度上能够吸引编辑和审稿人的眼球,提升录用概率。就跟人的形象一样,形象好第一印象就会好,评价也不会很差。所以分享画图的方法。助力科研。有需要论文写作指导的朋友可以关注私信我哦。

在目标检测论文中,图表是非常重要的部分,它们能够直观展示你的方法、实验结果以及改进效果。以下是几类在目标检测论文中常用且重要的图表类型。

 一、Excel表格画图(消融实验和对比实验部分建议用)

Excel表格可以简单的画折线图等。对比实验或者消融实验,可以用这种方法,本人在大论文中也采用这样的方法,盲省分数会增加,提高顺利通过的概率,增加和丰富论文的内容。如下表格,可以得到如下所示,Excel中有很多图,有柱状图、折线图、箱型图等等,我主要用比较常见的折线图和柱状图为例,以下为草图,可以再进行修饰一下。朋友们可以根据自己的情况再进行丰富改进完善创新。

这样就可以对着折线图再输出一波内容,同时也更加方便审稿人对文章进行理解,让审稿人觉得你比其他人更加用心中稿意愿更加强烈,从而提升中稿的成功率。

二、PPT做图(网络结构图绘制)

采用PPT画网络结构图,本人认为是比较快速的方法,因为ppt每个电脑都有。有朋友也问到如何生成图片从ppt中,可以全选后另存为图片即可。另外本人有网络结构图绘制等ppt模板,有需要的朋友可关注我私信后获取。

三、draw做图 

GitHub上有个科研绘图软件,这个画图也可以的。画结构图等也很方便。

四、Visio做图

visio画图可能没有那么多颜色花里胡哨的感觉,不过也是比较方便画流程图,并且可以集成到word里面,随时可以点击文档中的图进行修改,不好的地方是需要安装visio同时制作的图占内存会比较大。


1. 模型架构图
目的:直观展示你的模型结构和创新点。  
内容:
- 总体架构设计,显示输入、特征提取、融合、预测等模块。
- 突出关键创新模块,比如新的特征融合方法、损失函数设计等。
- 使用颜色或标注区分模块之间的关系。

工具推荐:  
- Visio、PowerPoint、draw.io 或 PyTorch's `torchviz`。

2. 数据集样本和标注展示
目的:展示你使用的数据集特点,比如类别分布、不平衡性或复杂场景。  
内容:
- 数据集样本图片,展示检测目标的多样性(如遮挡、尺度变化、复杂背景)。
- 标签分布的柱状图或饼状图,显示类别数量是否均衡。

3. 检测效果可视化
目的:证明你的模型在实际场景中的表现。  
内容:
- 展示几张典型的检测结果图,显示检测框(bounding box)、类别、置信度等信息。
- 涉及挑战性的场景,如小目标、遮挡、多目标密集分布。
- 对比基线模型和你提出方法的检测结果。

建议:多选择对比图(Baseline vs Proposed Method)。

4. 消融实验分析图
目的:证明各模块或设计的有效性。  
内容:
- 使用柱状图、折线图或表格展示消融实验结果。
- 显示不同模块(如损失函数、特征融合模块)对性能(如mAP、FPS)的提升。

5. 性能对比图
目的:展示你的方法相对于其他方法的优势。  
内容:
- 与当前 SOTA 方法(如 YOLOv8、RetinaNet 等)的性能对比图表。
- 通常包括:
  - 精度指标(mAP、AP50、AP75)。
  - 推理速度(FPS)。
  - 模型大小(参数量或 FLOPs)。
- 使用折线图或柱状图直观展示你的方法的平衡性(例如精度 vs 速度)。

6. 消耗 vs 精度的折线图
目的:展示模型在效率和效果之间的权衡。  
内容:
- 横轴:推理时间(ms)、参数量或 FLOPs。
- 纵轴:检测精度(mAP)。
- 对比其他方法,突出你的模型在效率和精度上的平衡点。

7. 错误分析图
目的:分析模型检测错误的原因。  
内容:
- 绘制混淆矩阵,展示不同类别间的误分类情况。
- 使用饼状图或柱状图展示错误类型比例(如误检、漏检、小目标错误)。

8. 训练过程曲线
目的:显示训练收敛性和优化效果。  
内容:
- 损失函数值(loss)随 epoch 变化的曲线。
- 验证精度(mAP 或 AP)的变化趋势。

9. 创新模块的可视化
目的:验证你提出模块的作用。  
内容:
- 特征图的可视化(如卷积后的激活图,展示模型关注区域)。
- 显示加入模块前后特征图的差异(如更清晰的目标边缘或更集中注意力)。

10. 推理过程时间分析
目的:展示模型的实时性。  
内容:
- 用条形图或折线图展示各模块(如特征提取、检测头)的时间占比。
- 对比不同输入分辨率或硬件(如 GPU vs CPU)下的推理速度。

额外建议:
1. 美观性:所有图表必须清晰、整洁,标注准确,配色和布局合理。
2. 对比清晰:如果是对比图,确保基线模型和你的模型之间的差异明显。
3. 自定义注释:在每张图中加注释,突出创新点或优点。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

人工智能算法研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值