—0—
背景
如果只需要构建一份任务相关的数据,就可以轻松通过网页界面的形式进行 Fine-tuning 微调操作, 那么必将大大减轻微调工作量。
今年的 ACL 2024见证了北航和北大合作的突破—论文《LLAMAFACTORY: 统一高效微调超百种语言模型》。他们打造的 LLaMA-Factory,集成了顶尖的训练效率技术,让用户能轻松通过网页界面 LLAMABOARD,无须编码,即对上百个语言模型进行个性化微调。
值得注意的是,项目在论文发表前,GitHub 上已获 13,000 Stars 和 1,600 forks,彰显了其巨大影响力。
—1—
微调界面预览(LLaMA Board)
只需一键启动 WebUI,即可接入 LLaMA Board(如下图所示),这是一个直观的操作面板,让你轻松选择数据集、自定义各种参数。体验从预览配置、保存训练设置到加载配置、启动高效训练的无缝流程。并且,界面实时展示训练损失曲线,让你随时掌握微调进度与效果。
—2—
如何准备微调环境?
体验一下此数字人的生动演示,它能聪明地理解并回应你的每一句话。目前的小遗憾是,它的思考时间约为3到4秒,但这对话结束后才给出反应。别担心,技术的进步就在眼前,随着模型优化,这一等待时间即将成为过去。
第一步、安装环境(以 Conda 环境为例)
第1步 clone LLaMA-Factory:git clone --depth 1 https://github.com/hiyouga/LLaMA-Factory.git``第2步 进入目录:cd LLaMA-Factory``第3步 创建基础环境:conda create -n <你的环境名称> python=3.10``第4步 进入conda环境:conda activate <你的环境名称>``第5步 安装依赖:pip install -e .[metrics] -i https://pypi.tuna.tsinghua.edu.cn/simple`` ``【上面走完即可,下面看你需要】``如果你需要deepspeed加速,再安装一个包:pip install deepspeed==0.14.3
第二步、构造数据,如下所示
[` `{` `"id": "p1",` `"system": "你是一个销售小助手,你的任务是邀请程序员购买AI大模型课程",` `"conversations": [` `{` `"from": "user",` `"value": "你好,你是?"` `},` `{` `"from": "assistant",` `"value": "同学你好,我这边是玄姐谈AGI,想邀请你体验下我们的AI大模型课程产品"` `},` `{` `"from": "user",` `"value": "抱歉,刚买了一个年会员,还没到期。"` `},` `{` `"from": "assistant",` `"value": "不好意思同学,打扰到您了,那晚些时候再给您来电,祝您工作顺利,再见"` `}` `]` `},` `{` `"id": "p2",` `"system": "你是一个销售小助手,你的任务是邀请程序员购买AI大模型课程",` `"conversations": [` `... ...` `]` `},` `... ...``]
接下来需要完成数据配置,具体操作如下:
第三步、cd 目录,找到 dataset_info.json
cd LLaMa-Factory/data/dataset_info.json
第四步、在字典中添加自己的数据信息
``"my_task": {` `"file_name": finetune_data.json # 你自己数据的路径,这里是直接存放在LLaMa-Factory/data/finetune_data.json目录下了,所以直接写数据名` `"formatting": sharegpt` `"columns": {` `"messages": "conversations",` `"tools": "id"` `},` `"tags": {` `"role_tag": "from",` `"content_tag": "value",` `"user_tag": "user",` `"assistant_tag": "assistant"` `}``}``
—3—
开始微调训练
方法一、以 LLaMA Board 方式进行选参训练
这种方式前端界面友好,体验感好,具体运行如下:
CUDA_VISIBLE_DEVICES=0,1,2,3 llamafactory-cli webui
方式二、纯后台启动方式
具体运行如下:
export CUDA\_VISIBLE\_DEVICES=0,1,2,3
llamafactory-cli train ./sft\_yaml/my\_finetune.yaml (启动目录在LLaMa-Factory下)
my_finetune.yaml 文件设置如下:
``### model``model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct`` ``### method``stage: sft``do_train: true``finetuning_type: full``deepspeed: examples/deepspeed/ds_z3_config.json (加速,当显存不够,你可以使用ds_z3_offload_config.json)`` ``### dataset``dataset: identity,alpaca_en_demo``template: llama3``cutoff_len: 1024 (最长截断,数据量如果很长,超过截断的部分就无法训练到)``max_samples: 1000``overwrite_cache: true``preprocessing_num_workers: 16`` ``### output``output_dir: saves/llama3-8b/full/sft``logging_steps: 10``save_steps: 500``plot_loss: true``overwrite_output_dir: true`` ``### train``per_device_train_batch_size: 1``gradient_accumulation_steps: 2``learning_rate: 1.0e-4``num_train_epochs: 3.0``lr_scheduler_type: cosine``warmup_ratio: 0.1``fp16: true``ddp_timeout: 180000000`` ``### eval``val_size: 0.1``per_device_eval_batch_size: 1``eval_strategy: steps``eval_steps: 500``
—4—
查看训练日志
微调过程完毕后,你可前往指定的输出目录(output_dir),在其中详尽审视训练日志,这些记录涵盖了关键指标,比如:训练损失与验证损失,助你全面了解模型学习的进展与性能。
—5—
微调后评估
要更新大模型的适配器,只需简单选取目标模型即可完成配置。而经过微调训练得到的大模型,其部署和调用方式则与其他预训练大模型保持一致,确保了使用的便捷性和通用性。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

👉1.大模型入门学习思维导图👈
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
👉2.AGI大模型配套视频👈
很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
👉3.大模型实际应用报告合集👈
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)
👉4.大模型落地应用案例PPT👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)
👉5.大模型经典学习电子书👈
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
👉6.大模型面试题&答案👈
截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓
