2024五一赛数学建模A题20页完整1-3小问解题思路代码+运行结果高清图

2024五一赛A题保姆级建模思路20页+1-3问可执行代码+后续成品论文+各类可视化图表icon-default.png?t=N7T8https://www.jdmm.cc/file/2710585

问题1:首先,根据题目的要求,可知空程最短的原则就是空程的总长度最小。因此,需要设计一个最优的切割路径方案,   使得空程总长度最小。

假设切割路径为一条折线,由于切割起始点为右下角点,可以先从右下角开始,往左上方进行切割。根据题目给出的下料切   割布局N1,可以将钢板分为多个矩形区域,每个区域都是一次切割的最小单位。

因此,要使空程总长度最小,就需要将这些矩形区域尽量放置在一条折线上,即尽量减少折线的转折点。  

其中,n为矩形区域的数量。由于每个矩形区域的高度都是固定的,因此空程总长度的最小值取决于每个矩形区域的宽度。   根据题目给出的下料切割布局N1,可以得出每个矩形区域的宽度为:

w 1=3, w 2=3, w 3=3, w 4=2, w 5=2, w 6=2, w 7=1, w 8=1, w 9=1

因此,最优的切割路径方案为先从右下角开始,依次切割出宽度为3的三个矩形区域,然后再切割出宽度为2的三个矩形区   域,最后再切割出宽度为1的三个矩形区域。

此时,空程总长度为:

L =(3+3+3)+(2+2+2)+(1+1+1)=18

因此,最优的切割路径方案为:

从右下角开始,依次切割出宽度为3的三个矩形区域,然后再切割出宽度为2的三个矩形区域,最后再切割出宽度为1的三个   矩形区域。

空程总长度为18。

总结起来,最优的切割路径方案即为将矩形区域按照宽度从大到小依次排列,从右下角开始进行切割。这样可以保证空程总   长度最小。

数学模型: 设钢板的长为 L ,宽为 W ,切割起始点坐标为 ( x 0 , y 0 ) ,切割路径上各点的坐标为 ( x i , y i ) ,空程总长度为 D ,则有:

最优切割路径方案:   根据空程最短原则,最优切割路径应为从切割起始点开始,按照顺时针或逆时针方向依次切割,直到回到原点。具体方案如下:

  1. 从切割起始点 ( x 0 , y 0 ) 开始,沿着钢板的右边界 B 3− B 4 向上切割,直到达到上边界 B 1− B 2 。
  2. 沿着上边界 B 1− B 2 向左切割,直到达到左上角 (0, W ) 。
  3. 沿着左边界 B 1− B 3 向下切割,直到达到下边界 B 2− B 4 。
  4. 沿着下边界 B 2− B 4 向右切割,直到达到右下角 ( L ,0) 。
  5. 沿着右边界 B 3− B 4 向上切割,直到回到切割起始点 ( x 0 , y 0 ) 。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值