2024五一赛A题保姆级建模思路20页+1-3问可执行代码+后续成品论文+各类可视化图表https://www.jdmm.cc/file/2710585
问题1:首先,根据题目的要求,可知空程最短的原则就是空程的总长度最小。因此,需要设计一个最优的切割路径方案, 使得空程总长度最小。
假设切割路径为一条折线,由于切割起始点为右下角点,可以先从右下角开始,往左上方进行切割。根据题目给出的下料切 割布局N1,可以将钢板分为多个矩形区域,每个区域都是一次切割的最小单位。
因此,要使空程总长度最小,就需要将这些矩形区域尽量放置在一条折线上,即尽量减少折线的转折点。
其中,n为矩形区域的数量。由于每个矩形区域的高度都是固定的,因此空程总长度的最小值取决于每个矩形区域的宽度。 根据题目给出的下料切割布局N1,可以得出每个矩形区域的宽度为:
w 1=3, w 2=3, w 3=3, w 4=2, w 5=2, w 6=2, w 7=1, w 8=1, w 9=1
因此,最优的切割路径方案为先从右下角开始,依次切割出宽度为3的三个矩形区域,然后再切割出宽度为2的三个矩形区 域,最后再切割出宽度为1的三个矩形区域。
此时,空程总长度为:
L =(3+3+3)+(2+2+2)+(1+1+1)=18
因此,最优的切割路径方案为:
从右下角开始,依次切割出宽度为3的三个矩形区域,然后再切割出宽度为2的三个矩形区域,最后再切割出宽度为1的三个 矩形区域。
空程总长度为18。
总结起来,最优的切割路径方案即为将矩形区域按照宽度从大到小依次排列,从右下角开始进行切割。这样可以保证空程总 长度最小。
数学模型: 设钢板的长为 L ,宽为 W ,切割起始点坐标为 ( x 0 , y 0 ) ,切割路径上各点的坐标为 ( x i , y i ) ,空程总长度为 D ,则有:
最优切割路径方案: 根据空程最短原则,最优切割路径应为从切割起始点开始,按照顺时针或逆时针方向依次切割,直到回到原点。具体方案如下:
- 从切割起始点 ( x 0 , y 0 ) 开始,沿着钢板的右边界 B 3− B 4 向上切割,直到达到上边界 B 1− B 2 。
- 沿着上边界 B 1− B 2 向左切割,直到达到左上角 (0, W ) 。
- 沿着左边界 B 1− B 3 向下切割,直到达到下边界 B 2− B 4 。
- 沿着下边界 B 2− B 4 向右切割,直到达到右下角 ( L ,0) 。
- 沿着右边界 B 3− B 4 向上切割,直到回到切割起始点 ( x 0 , y 0 ) 。