自学SPSS 二元logisitic回归(基本操作)

2024/3/25:

SPSS 二元logisitic 回归:

基本了解:因变量:分类变量;

          自变量:连续变量;(若有分类变量,则变为哑变量)

-à主要用于医学方面:

重点:样本量:是自变量的5-10倍;(总样本量是自变量的5倍以上)

(样本量的一般准则)

结局变量:(如阳性)不能低于总样本量的15%(注意:用PASS的计算样本量的计算软件)

分析->回归->二元logisitic回归

自变量为分类变量的处理:->将分类变量做一个哑变量的处理

即分类协变量;

生成哑变量之后:

一般:无(否)->0;   是(有)->1(阴性一定是0,阳性的一定是1)

其中,无作为一个参考类别(即0作为一个参考类别)

继续->选项->霍斯摩…+Exp(B)的置信区间.->

确定:

结果:

0代表一个参考类别,1代表一个

拟合优度的状况:(是否良好)

(显著性)p=0.653>0.5(接受原假设,即能够反映原始变量的真实关系

Exp(B):(OR)

分类协变量

意思是女(1)=5.034*男(0)倍;

(显著性<0.5,显著性影响)

其他变量类同;

自变量(协变量):

BMI:

比多一个单位,导致因变量提升0.326倍。

可见,家族史是一个核心因素;(OR)

该图又GraphPad进行绘制

### 合适用于SPSS生存分析的数据集 对于希望在SPSS中执行生存分析的研究者来说,选择合适的数据集至关重要。理想情况下,这些数据集应包含时间至事件的时间长度以及该事件是否发生的信息(即删失状态)。常见的适用场景包括医学研究中的患者存活期、机械部件的寿命测试等。 #### 数据集特征需求 - **时间变量**:表示从起始点到终点所经历的具体时间段。 - **事件指示符**:标记特定事件是否已经发生的二元变量;如果事件未发生,则此观测被视作右删失。 - **协变量**:可能影响事件发生概率的因素,如年龄、性别或其他临床指标[^1]。 #### 推荐公开可用资源获取途径 多个在线平台提供可用于生存分析的数据集合: - **Kaggle**:这是一个拥有大量竞赛和公共数据集的社区网站,在这里可以找到许多经过整理并适合不同类型的统计方法使用的健康科学领域内的数据集。 - **UCI机器学习库**:由加州大学欧文分校维护的一个广泛认可的数据存储库,其中包含了来自各种实际应用场景下的结构化表格型文件,部分非常适合用来练习生存函数估计技术。 - **Survival包自带数据集**:虽然主要是面向R用户的软件包,但是`survival` R package内含有的几个经典例子同样能够作为教学材料引入SPSS环境之中进行探索性实验[^4]。 #### 示例数据集描述 一个典型的应用实例来自于癌症治疗效果评估方面——例如,“WHAS500”心脏疾病随访调查资料就非常契合上述提到的要求。它记录了病患自入院以来直至死亡或最后一次联系为止的时间跨度,并且还收集了一系列个人背景和社会经济学属性来辅助构建风险预测模型[^3]。 ```r # 下载并加载whas500数据集 (假设通过某种方式转换成CSV格式以便于导入SPSS) write.csv(whas500, "path/to/your/directory/whas500.csv", row.names=FALSE) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值