一.自动编码器
时序数据常常表现为高维度的特点,过多的冗余属性不仅徒增训练负担,还会对模型的预测效果带来负面影响。通过使用时序数据降维的方法对训练数据进行预处理,可以大幅减少冗余维度的数据,从而提高训练速度和预测性能。Bengio等人受多层受限玻尔兹曼机堆叠而成的深度信念网络启发,由此提出了一种具有多层隐藏层的深度神经网络结构,这种结构中包含自动编码器( Auto- Encoder,AE) [60。深度自动编码器的结构如图2.1所示,输入x经过- -层-层隐藏层的编码,得到压缩后的编码h,,然后经过层层解码后得到输出x'。
深度自动编码器以输入对输出之间的误差作为损失函数,使用反向传播算法不断迭代整个网络的参数,得到最终的编码器模型。自动编码器以无监督的方式学习时序数据不同属性间的相关性,从而尽可能保留原始数据的特征。若输入的样本数量为N个,损失函数L(x,x)的表示为:
二.降噪自动编码器
Vincent在一篇论文中提出了一种基于自动编码器改良的降噪自动编码器(Denoising Auto Encoder, DAE) , 这种编码器相比于原始的自动编码器具有更好从原始数据中提取出关键特征的能力162]。首先以一定概率将原始数据x矩阵中的部分数据置0,得到丢失

本文介绍了如何使用降噪自编码器(DAE)来处理高维度的车流量数据,以实现数据降维。DAE相比普通自动编码器,具有更强的特征提取能力,能提升模型的泛化和鲁棒性。数据集包含每小时天气和节假日对交通量的影响,通过训练DAE模型,可以选择合适的编码维数以捕获数据的关键特征。
最低0.47元/天 解锁文章
1912

被折叠的 条评论
为什么被折叠?



