SD绘画对比20种采样模式的优劣异同

Stable Diffusion对比20种采样模式的优劣异同

为何【DPM++ 2M Karras】会成为大多数人在使用 Stable Diffusion 进行AI绘画时所常用的采样模式呢?

要想回答这个问题,还是要靠具体的实测。

下面就让我们看看各种采样模式,在5步、10步、20步、30步采样后结果的直接对比吧。

相关提示词如下,基本的意思就是,一个女孩穿着未来主义风格的衣服。

Prompt:
(masterpiece, finely detailed beautiful eyes: 1.2), ultra-detailed, a joyful girl in futuristic attire, SF, glowing gadgets, standing, a utopian metropolis, marveling, detailed background, (realistic:2), volumetric light, sunbeam, light rays, sky, cloud,

Negative prompt:
EasyNegative, (worst quality, low quality:1.4), monochrome, zombie,

img

1、Euler a

Euler a,属于超快采样模式,采样10次,即可完成基本画面。但是继续提高采样步数,就基本脱离了提示词。

2、Euler

Euler,同属于超快采样模式,采样10次,即可完成基本画面,继续提高采样步数,会略微调整一下衣物的细节。

3、LMS

LMS,可能不太适合拟真画面,采样30次,仍然不能完成基本画面。

4、Heun

Heun,采样20次后,可以完成基本画面,继续提高采样步数,会略微调整一下衣物与背景的细节。

5、DPM2

DPM2,采样20次后,可以完成基本画面,继续提高采样步数,会改变背景的细节。

img

6、DPM2 a

DPM2 a,采样20次后,可以完成基本画面,继续提高采样步数,会脱离提示词。

7、DPM++ 2S a

DPM++ 2S a,也属于超快采样,采样10次即可完成基本画面,采样20次会形成新风格,继续提高采样步数,则会脱离提示词。

8、DPM++ 2M

DPM++ 2M,采样20次后,可以完成基本画面,继续提高采样步数,会完善人物衣物的细节,整体变化不大。

9、DMP++ SDE

DPM++ SDE,基本是脱离提示词的状态,但用于生成人物特写似乎特别高效,采样5次即可生成较好的人物画面。

10、DPM fast

DPM fast,不太适合拟真画面,采样30次也是脱离提示词的状态。

img

11、DPM adaptive

DPM adaptive,和 DPM++ SDE 差不多基本都是脱离提示词的状态,但用于生成人物特写似乎特别高效,采样5次即可生成较好的人物画面,与 DPM++ SDE 不同的是人物特征比较固化。

12、LMS Karras

LMS Karras,采样色彩较好,采样10次后,可以完成基本画面,随着采样步数的增加,会进一步完善人物与背景的细节。

13、DPM2 Karras

DPM2 Karras,采样10次后,可以完成基本画面,随着采样步数的增加,会进一步完善背景的细节,人物变化不大。

14、DPM2 a Karras

DPM2 a Karras,不太适合拟真画面,完全脱离提示词,随着采样步数的增加,人物与背景的变化都很大,但细节比较多,适合随机绘画。

15、DPM++ 2S a Karras

DPM++ 2S a Karras,也属于超快采样,采样5次即可完成基本画面,采样10次就会有较好的表现,但采样步数增多,反而会脱离提示词。

img

16、DPM++ 2M Karras

DPM++ 2M Karras,采样色彩较佳,随着采样次数的增加,人物及背景的细节都会得到相应的增强。看来大部分人使用它,都是为了获得更好的色彩和采样宽容性。

17、DPM++ SDE Karras

DPM++ SDE Karras,完全脱离了提示词,随着采样次数的增加,人物变化不大,背景变化较大,适合人物随机特写。

18、DDIM

DDIM,严格遵循提示词,采样10次可以完成基本画面,只是效果一般,采样20次会有较好的表现,采样30次达到稳定画面。

19、PLMS

PLMS,不太适合拟真画面,采样30次还不能完成基本画面,人物出现动漫画的特征。

20、UniPC

UniPC,采样20次可以完成基本画面,线条感较强,采样30次之后,开始向拟真人物发展。

所以,综上所述,大部分AI绘画研究者都选择使用 DPM++ 2M Karras,确实是因为这种采样模式在适配提示词、画面色彩及采样宽容性上的表现最好。

AIGC技术的未来发展前景广阔,随着人工智能技术的不断发展,AIGC技术也将不断提高。未来,AIGC技术将在游戏和计算领域得到更广泛的应用,使游戏和计算系统具有更高效、更智能、更灵活的特性。同时,AIGC技术也将与人工智能技术紧密结合,在更多的领域得到广泛应用,对程序员来说影响至关重要。未来,AIGC技术将继续得到提高,同时也将与人工智能技术紧密结合,在更多的领域得到广泛应用。

感兴趣的小伙伴,赠送全套AIGC学习资料和安装工具,包含AI绘画、AI人工智能等前沿科技教程,模型插件,具体看下方。
请添加图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值