超宽带(UWB)学习笔记——基于相位的测距方法

本文围绕使用无线信号测距展开,为提高精度采用载波相位测距,但会带来模糊度问题。详细介绍了基于相位的TDOA测距和TWR双向测距,包括原理推导、实现方案,还对TWR双向测距进行了误差分析,指出横轴越宽、点数越多,测距精度越高。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


前言

使用无线信号测距的系统中,为了提高测距精度,最好的方式是采用载波相位进行测距,这是由于载波的波长相对基带信号带宽而言要短得多,从而可以获得高得多的测距精度。但使用载波相位进行测距不可避免的会带来模糊度的问题(载波相位的小数部分可测,整数部分不可测),因此基于相位的测距方案主要是针对模糊度进行处理。本文对此进行简述。

1. 基于相位的TDOA测距

1.1 原理推导

接收机在本地时刻 t r t_r tr同时接收多个时间严格同步的发送节点发来的载波信号,并使用锁相环跟踪其相位。本地锁相环跟踪到的相位实际上是 t r t_r tr时刻到达接收机的信号在对应的发送节点发送时刻的相位。所以有:
τ = t r − 1 f c Φ ( k ) / ( 2 π ) = t r − 1 f c ( N + ϕ / ( 2 π ) ) \tau = t_r - \frac{1}{f_c}\Phi(k)/(2\pi) = t_r - \frac{1}{f_c}(N+\phi/(2\pi)) τ=trfc1Φ(k)/(2π)=trfc1(N+ϕ/(2π))
其中, N N N为整周模糊度, ϕ \phi ϕ为锁相环锁定的相位值。

1.2 实现方案

基于相位的TDOA测距,在GNSS定位中已经广泛使用,也是RTK算法的基本原理。RTK算法就是在使用相位进行TDOA测距的框架内,如何解决整周模糊度的问题,如 λ \lambda λ方法等。为了降低模糊度搜索的难度,通常会采用多个载频的差频以构造更长的波长来进行搜索。具体可参考相关书籍。

2 基于相位的TWR双向测距

2.1 原理推导

假设节点A在真实时刻 t 1 t_1 t1发送的信号相位为:
2 π f A t 1 + Φ A 2\pi f_At_1 + \Phi_A 2πfAt1+ΦA
到达节点B的时刻,节点B的本地相位为:
2 π f B ( t 1 + τ ) + Φ B 2\pi f_B(t_1+\tau) + \Phi_B 2πfB(t1+τ)+ΦB
节点B测量得到的相位是上述两者之差,该测量方式实际上就是本振对输入信号下变频后的相位:
Φ A − > B m e a s = 2 π ( f B − f A ) t 1 + 2 π f B τ + ( Φ B − Φ A ) \Phi^{meas}_{A->B} = 2\pi (f_B - f_A)t_1 + 2\pi f_B \tau + (\Phi_B - \Phi_A) ΦA>Bmeas=2π(fBfA)t1+2πfBτ+(ΦBΦA)
相应的,节点A接收到的节点B在真实时刻 t 2 t_2 t2发送的信号所测得的相位为:
Φ B − > A m e a s = 2 π ( f A − f B ) t 2 + 2 π f A τ + ( Φ A − Φ B ) \Phi^{meas}_{B->A} = 2\pi (f_A - f_B)t_2 + 2\pi f_A \tau + (\Phi_A - \Phi_B) ΦB>Ameas=2π(fAfB)t2+2πfAτ+(ΦAΦB)
两者相加可得:
Φ m e a s = Φ A − > B m e a s + Φ B − > A m e a s 2 = 2 π ( f A − f B ) ( t 2 − t 1 ) + 2 π f A + f B 2 τ = 2 π f A δ ( t 2 − t 1 ) + ( 1 − 0.5 δ ) ( 2 π f A τ ) \begin{align} \Phi^{meas} &= \frac{\Phi^{meas}_{A->B}+\Phi^{meas}_{B->A}}{2} \\ &= 2\pi(f_A - f_B)(t_2 - t_1) +2\pi \frac{f_A + f_B}{2}\tau \\ &= 2\pi f_A\delta (t_2 - t_1) +(1-0.5\delta)(2\pi f_A\tau) \end{align} Φmeas=2ΦA>Bmeas+ΦB>Ameas=2π(fAfB)(t2t1)+2π2fA+fBτ=2πfAδ(t2t1)+10.5δ)(2πfAτ)
其中, f A = ( 1 + δ ) f B f_A = (1+\delta)f_B fA=(1+δ)fB为A和B节点之间载波频偏。

由于相位存在整周模糊度问题,可以把上式转换到距离域上进行分析,有:
( N + ϕ m e a s ) = δ ( t 2 − t 1 ) c λ A + ( 1 − 0.5 δ ) ( L λ A ) ( N + \phi^{meas}) =\frac{\delta (t_2 - t_1)c}{\lambda_A} +(1-0.5\delta)(\frac{L}{\lambda_A}) (N+ϕmeas=λAδ(t2t1)c+10.5δ)(λAL)
其中, 0 ≤ ϕ m e s < 1 0\leq \phi^{mes} < 1 0ϕmes<1

如果发送的信号为多个子载波,则频率相近的载波之间,上式中的 N N N为定值,相减即可消除模糊度。

测距结果的本身有偏,该偏差和节点A的发送时刻 t 1 t_1 t1以及节点B的发送时刻 t 2 t_2 t2之差成正比,也和两个节点之间的载波频差成正比。
考虑频差为1ppm,两个节点发送时刻之差为1ms,则该项带来的误差为0.3m,不可忽略,必须消除。

2.2 实现方案

  • 节点A本振free running,以频率 f o f_o fo震动,并发送信号到节点B;
  • 节点B使用锁相环保持和接收到的信号同相,也就是说在节点B测量得到的相位差始终为0;
  • 节点B保持频率 f o f_o fo,发送信号返回到节点B;
  • 节点A直接鉴相,鉴别处本振和接收信号之间的相位差 ϕ \phi ϕ
  • 节点A即可以计算出A、B之间的距离。

简单的理解,可以认为节点A是发送方,节点B则是个理想反射体,节点A发送信号后接收反射波,从而完成测量,类似雷达的探测回波。

2.3 误差分析

从推导可知,测距结果实际上是横轴为载频、纵轴为相位差的一条拟合直线的斜率。因此横轴越宽、点数越多,其测距精度自然越高。这也和信号带宽越宽、测距越准的理论相符。

参考文献

-无。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值