前言
使用无线信号测距的系统中,为了提高测距精度,最好的方式是采用载波相位进行测距,这是由于载波的波长相对基带信号带宽而言要短得多,从而可以获得高得多的测距精度。但使用载波相位进行测距不可避免的会带来模糊度的问题(载波相位的小数部分可测,整数部分不可测),因此基于相位的测距方案主要是针对模糊度进行处理。本文对此进行简述。
1. 基于相位的TDOA测距
1.1 原理推导
接收机在本地时刻
t
r
t_r
tr同时接收多个时间严格同步的发送节点发来的载波信号,并使用锁相环跟踪其相位。本地锁相环跟踪到的相位实际上是
t
r
t_r
tr时刻到达接收机的信号在对应的发送节点发送时刻的相位。所以有:
τ
=
t
r
−
1
f
c
Φ
(
k
)
/
(
2
π
)
=
t
r
−
1
f
c
(
N
+
ϕ
/
(
2
π
)
)
\tau = t_r - \frac{1}{f_c}\Phi(k)/(2\pi) = t_r - \frac{1}{f_c}(N+\phi/(2\pi))
τ=tr−fc1Φ(k)/(2π)=tr−fc1(N+ϕ/(2π))
其中,
N
N
N为整周模糊度,
ϕ
\phi
ϕ为锁相环锁定的相位值。
1.2 实现方案
基于相位的TDOA测距,在GNSS定位中已经广泛使用,也是RTK算法的基本原理。RTK算法就是在使用相位进行TDOA测距的框架内,如何解决整周模糊度的问题,如 λ \lambda λ方法等。为了降低模糊度搜索的难度,通常会采用多个载频的差频以构造更长的波长来进行搜索。具体可参考相关书籍。
2 基于相位的TWR双向测距
2.1 原理推导
假设节点A在真实时刻
t
1
t_1
t1发送的信号相位为:
2
π
f
A
t
1
+
Φ
A
2\pi f_At_1 + \Phi_A
2πfAt1+ΦA
到达节点B的时刻,节点B的本地相位为:
2
π
f
B
(
t
1
+
τ
)
+
Φ
B
2\pi f_B(t_1+\tau) + \Phi_B
2πfB(t1+τ)+ΦB
节点B测量得到的相位是上述两者之差,该测量方式实际上就是本振对输入信号下变频后的相位:
Φ
A
−
>
B
m
e
a
s
=
2
π
(
f
B
−
f
A
)
t
1
+
2
π
f
B
τ
+
(
Φ
B
−
Φ
A
)
\Phi^{meas}_{A->B} = 2\pi (f_B - f_A)t_1 + 2\pi f_B \tau + (\Phi_B - \Phi_A)
ΦA−>Bmeas=2π(fB−fA)t1+2πfBτ+(ΦB−ΦA)
相应的,节点A接收到的节点B在真实时刻
t
2
t_2
t2发送的信号所测得的相位为:
Φ
B
−
>
A
m
e
a
s
=
2
π
(
f
A
−
f
B
)
t
2
+
2
π
f
A
τ
+
(
Φ
A
−
Φ
B
)
\Phi^{meas}_{B->A} = 2\pi (f_A - f_B)t_2 + 2\pi f_A \tau + (\Phi_A - \Phi_B)
ΦB−>Ameas=2π(fA−fB)t2+2πfAτ+(ΦA−ΦB)
两者相加可得:
Φ
m
e
a
s
=
Φ
A
−
>
B
m
e
a
s
+
Φ
B
−
>
A
m
e
a
s
2
=
2
π
(
f
A
−
f
B
)
(
t
2
−
t
1
)
+
2
π
f
A
+
f
B
2
τ
=
2
π
f
A
δ
(
t
2
−
t
1
)
+
(
1
−
0.5
δ
)
(
2
π
f
A
τ
)
\begin{align} \Phi^{meas} &= \frac{\Phi^{meas}_{A->B}+\Phi^{meas}_{B->A}}{2} \\ &= 2\pi(f_A - f_B)(t_2 - t_1) +2\pi \frac{f_A + f_B}{2}\tau \\ &= 2\pi f_A\delta (t_2 - t_1) +(1-0.5\delta)(2\pi f_A\tau) \end{align}
Φmeas=2ΦA−>Bmeas+ΦB−>Ameas=2π(fA−fB)(t2−t1)+2π2fA+fBτ=2πfAδ(t2−t1)+(1−0.5δ)(2πfAτ)
其中,
f
A
=
(
1
+
δ
)
f
B
f_A = (1+\delta)f_B
fA=(1+δ)fB为A和B节点之间载波频偏。
由于相位存在整周模糊度问题,可以把上式转换到距离域上进行分析,有:
(
N
+
ϕ
m
e
a
s
)
=
δ
(
t
2
−
t
1
)
c
λ
A
+
(
1
−
0.5
δ
)
(
L
λ
A
)
( N + \phi^{meas}) =\frac{\delta (t_2 - t_1)c}{\lambda_A} +(1-0.5\delta)(\frac{L}{\lambda_A})
(N+ϕmeas)=λAδ(t2−t1)c+(1−0.5δ)(λAL)
其中,
0
≤
ϕ
m
e
s
<
1
0\leq \phi^{mes} < 1
0≤ϕmes<1。
如果发送的信号为多个子载波,则频率相近的载波之间,上式中的 N N N为定值,相减即可消除模糊度。
测距结果的本身有偏,该偏差和节点A的发送时刻
t
1
t_1
t1以及节点B的发送时刻
t
2
t_2
t2之差成正比,也和两个节点之间的载波频差成正比。
考虑频差为1ppm,两个节点发送时刻之差为1ms,则该项带来的误差为0.3m,不可忽略,必须消除。
2.2 实现方案
- 节点A本振free running,以频率 f o f_o fo震动,并发送信号到节点B;
- 节点B使用锁相环保持和接收到的信号同相,也就是说在节点B测量得到的相位差始终为0;
- 节点B保持频率 f o f_o fo,发送信号返回到节点B;
- 节点A直接鉴相,鉴别处本振和接收信号之间的相位差 ϕ \phi ϕ;
- 节点A即可以计算出A、B之间的距离。
简单的理解,可以认为节点A是发送方,节点B则是个理想反射体,节点A发送信号后接收反射波,从而完成测量,类似雷达的探测回波。
2.3 误差分析
从推导可知,测距结果实际上是横轴为载频、纵轴为相位差的一条拟合直线的斜率。因此横轴越宽、点数越多,其测距精度自然越高。这也和信号带宽越宽、测距越准的理论相符。
参考文献
-无。