前言
使用超宽带进行测距,对抗多径是一个非常重要的问题,其本质是在最强径不是第一径(如LOS信号不是直达径)的情况下还能找到真正的第一径,而且可以准确的测量第一径的上升沿时刻。本文对Decawave的芯片中所实现的一种第一径检测算法进行介绍。
1. 第一径检测算法描述
1.1 问题的提出
该问题基于类似802.15.4a中描述的UWB测距HRP模式展开。该模式下测距的基本原理是读取信道CIR,并根据CIR找到最强径,作为到达时刻(RMARKER)的测量。由于多径信号的存在,导致找到的最强径不一定是真正的直达径。同时,多径信道也可能将最强径展宽,从而影响测量精度。
一个典型的多径信道下测得的CIR如下图所示:
对于直射信号而言,其信号强度未必最强,但一定是最早出现的,其他多径信号由于反射路径带来的延时,必然落后于直达径。因此,可以依据该特点在CIR进行第一径检测,从而引出第一径检测算法LDE(Leading Edge Detection)。
1.2 实现过程
- 对接收机经过相关和积分后的CIR结果进行循环移位,将最大值位置移动到整个CIR周期的大约3/4处。设移位完成后的CIR信号数组为cir[1:N],其中N为一个周期内得到的CIR点数,考虑目前典型的UWB芯片,在码片数位31的模式下,N=992,对应1us的符号周期。
- 从这一个周期的CIR信号中选取一段噪声数据进行噪底估计。设选取的数据为cir[n1:n2]。理论上来说,n1可以选取接近1的数,n2则需要选取一个离最大值(即整个数据长度的3/4)较远,但又不是特别小的值。实际上,由于一个周期的CIR数据的尾部一般会有一个能量衰减的过程,而上一个周期的尾部可能会翻叠到当前周期的前部,因此噪底估计也不能从当前周期的头部开始,也就是说,n1需要选取一个合理的数。n1和n2可以根据实际情况进行调整。
- 对cir[n1:n2]的噪声数据进行统计,得到噪声的均值 μ n \mu_n μn和方差 σ n \sigma_n σn,并记录噪声的最大值 ψ n m a x \psi_n^{max} ψnmax
- 根据噪声均值和方差计算峰值门限 t h p e a k = max ( p × ψ n m a x , μ n + q × σ n ) th_{peak}=\max(p \times \psi_n^{max}, \mu_n + q \times \sigma_n) thpeak=max(p×ψnmax,μn+q×σn),其中p和q是可配的参数
- 从cir[n2+1]开始,寻找幅度大于上述门限的第一个cir值,记录该值所在的位置为 i i i
- 选取cir[i-3:i+4]共8个点,前后相减,得到7个一阶导数值:d_cir[1:7] = cir[i-2:i+4] - cir[i-3:i+3]
- 从d_cir[1:7]中选取连续三个点v[1:3],满足v[2]>max(v[1], v[3]),对这三个点进行拟合,找到最大值所在的位置,该位置即是LDE算法所得到的第一径的位置: τ = 1 2 v ( 3 ) − v ( 1 ) v ( 2 ) − min ( v ( 1 ) , v ( 3 ) ) \tau = \frac{1}{2}\frac{v(3)-v(1)}{v(2)-\min(v(1),v(3))} τ=21v(2)−min(v(1),v(3))v(3)−v(1)
1.3 参数配置
上述过程中,有如下几个参数可以作为寄存器配置:
- n1:进行噪声统计的数据区间的起始值
- n2:进行噪声统计的数据区间的终止值
- p:使用噪声峰值计算第一径幅度门限的乘性因子参数
- q:使用噪声统计均值和方差计算第一径幅度门限的乘性因子参数
另,在统计噪声的时候,可以通过一个滑动窗进行平滑后再进行统计,该滑动窗的长度 w w w以及平滑的系数 α \alpha α同样可以作为可配置参数。
2. 总结
由上述算法描述可知,由于最终拟合的一阶导数最大值的位置为一个小数,因此第一径的拟合精度可以远大于CIR采样的分辨率。该算法不仅在很大程度上消除了多径信道带来的误差影响,也是超宽带芯片采用124.8MHz采样,但测距精度可以达到厘米级的一个内在原因。
参考文献
- Receiver For Use In An Ultra-wideband Communication System, US patent, US10,090,879 B2, 2014