清风数学建模——插值算法

本文介绍了插值法在数据处理中的作用,详细讲解了一维插值的原理,包括拉格朗日、牛顿插值法的优缺点,以及分段线性、三次埃尔米特和三次样条插值的实例。同时讨论了n维数据插值的方法,如`spline`和`pchip`。
摘要由CSDN通过智能技术生成

插值法

作用

数模比赛中,常常需要根据已知的函数点进行数据、模型的处理和分析,但可能出现数据极少或者数据缺失的情况,此时数据并不能支撑分析,这时候就需要用到一些数学的方法,去模拟产生一些新的但又比较靠谱的值来满足数据的需求。以上提到正是插值法的作用

定义

设函数y=f(x)在区间[a,b]上有定义,且已知在点
a < = x 0 < x 1 < . . . < x n < = b a<=x_0<x_1<...<x_n<=b a<=x0<x1<...<xn<=b
上的值分别为:
y 0 , y 1 , . . . < y n y_0,y_1,...<y_n y0,y1,...<<

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值