插值与拟合(附代码)

本文介绍了插值方法,包括拉格朗日插值、牛顿插值和埃尔米特插值,重点讲解了分段三次埃尔米特插值(PCHIP)和三次样条插值。在实际应用中,PCHIP常用于减少龙格现象。此外,还探讨了拟合方法,如最小二乘法,以及如何通过拟合优度评估拟合质量。最后,提到了MATLAB中的cftool用于非线性拟合。
摘要由CSDN通过智能技术生成

插值方法:

拉格朗日插值和牛顿插值仅仅要求插值多项式在插值节点处与被插函数有相等的函数值,而这种插值多项式却不能全面反映被插值函数的性态

然而在许多实际问题中,不仅要求插值函数与被插值函数在所有节点处有相同的函数值,它也需要在一个或全部节点上插值多项式与被插 函数有相同的低阶甚至高阶的导数值

不但要求在节点上的函数值相等,而且还要求对应的导数值也相等,甚至要求高阶导数也相等,满足这种要求的插值多项式就是埃尔米特插值多项式。

直接使用 Hermite 插值得到的多项式次数较高,也存在着龙格现象,
因此在实际应用中,往往使用分段三次 Hermite 插值多项式 (PCHIP)

1.分段三次埃尔米特插值

Matlab 有内置的函数:
p = pchip(x,y, new_x) 
x 是已知的样本点的横坐标 ;y 是已知的样本点的纵坐标 ;new_x 是要插入处对应的横坐标

代码如下: 

clc,clear
x=-pi:pi;
y=sin(x);
new_x=-pi:0.1:pi;
p=pchip(x,y,new_x);
plot(x,y,'o',new_x,p,'r-')

得到结果:

plot 函数用法 :
plot(x1,y1,x2,y2) 
线方式: 实线 : 点线 ‐.  虚点线 ‐ ‐ 波折线
点方式: 圆点 + 加号 星号 x x 小圆
颜色: y 黄; r g 绿; b 蓝; w 白; k 黑; m 紫; c

2.三次样条插值

Matlab 有内置的函数:
p = spline (x,y, new_x) 
x 是已知的样本点的横坐标 ;y 是已知的样本点的纵坐标 ;new_x 是要插入处对应的横坐标

代码如下:

clc,clear
x=-pi:pi;
y=sin(x);
new_x=-pi:0.1:pi;
p1=pchip(x,y,new_x);
p2=spline(x,y,new_x);
plot(x,y,'o',new_x,p1,'r-',new_x,p2,'b-')
legend('sample point','pchip','spline','Location','SouthEast')

得到结果:

legend(string1,string2,string3, …)

分别将字符串 1 、字符串 2 、字符串 3…… 标注到图中,
每个字符串对应的图标为画图时的图标。
‘Location’ 用来指定标注显示的位置。

n维数据的插值

p = interpn( x1,x2,...,xn , y , new_x1,new_x2,...,new_xn , method )
x1,x2,...,xn 是已知的样本点的横坐标
y 是已知的样本点的纵坐标坐标
new_x1,new_x2,...,new_xn 是要插入点的横坐标
method 是要插值的方法
‘linear’ :线性插值(默认算法);
cubic’ :三次插值;
spline’ :三次样条插值法; ( 最为精准 )
nearest’ :最邻近插值算法。

代码如下:

clc,clear
x=-pi:pi;
y=sinx;
y=sin(x);
new_x=-pi:0.1:pi;
p=interpn(x,y,new_x,'spline'); %等价于p=spline(x,y,new_x);
plot(x,y,'o',new_x,p,'r-')

 得到结果:


 拟合方法

拟合的结果是得到一个确定的曲线,不一定经过每个样本点,但保证误差足够小。

确定拟合曲线(最小二乘法):

设这些样本点为 \left ( x_{i},y_{i} \right )\; \; i=1,2,...,n

我们设置的拟合曲线为y=kx+b

问:k和b取何值时,样本点和拟合曲线最接近

\hat{k},\hat{b}=\underset{k,b}{argmin}\left ( \sum_{i=1}^{n}\left ( y_{i}-\hat{y_{i}} \right )^{2} \right )

另:不用四次方的原因:(1)避免极端数据对拟合曲线的影响

                                          (2)最小二乘法得到的结果和MLE极大似然估计一致

不用奇数次方的原因:误差会正负相抵。


\hat{k}=\frac{n\sum_{i=1}^{n}x_{i}y_{i}-\sum_{i=1}^{n}y_{i}\sum_{i=1}^{n}x_{i}}{n\sum_{i=1}^{n}x_{i}^{2}-\sum_{i=1}^{n}x_{i}\sum_{i=1}^{n}x_{i}}

\hat{b}=\frac{\sum_{i=1}^{n}x_{i}^{2}\sum_{i=1}^{n}y_{i}-\sum_{i=1}^{n}x_{i}\sum_{i=1}^{n}x_{i}y_{i}}{n\sum_{i=1}^{n}x_{i}^{2}-\sum_{i=1}^{n}x_{i}\sum_{i=1}^{n}x_{i}}

clc,clear
plot(x,y,'o')
xlabel('x的值')
ylabel('y的值')
n=size(x,1)
k=(n*sum(x.*y)-sum(x)*sum(y))/(n*sum(x.*x)-sum(x)*sum(x));
b=((sum(x.*x)*sum(y)-sum(x)*sum(x.*y))/(n*sum(x.*x)-sum(x)*sum(x)));
hold on   %继续在之前的图形上作图
grid on   %显示网格线
f=@(x)k*x+b;
fplot(f,[2.5,7]);
legend('sample figure','fitting curve','location','SouthEast')

 


如何评价拟合的好坏:

拟合优度(可决系数):R^{2}

总体平方和:SST=\sum_{i=1}^{n}\left ( y_{i}-\bar{y} \right )^{2}

误差平方和:SSE=\sum_{i=1}^{n}\left ( y_{i}-\hat{y_{i}} \right )^{2}

回归平方和:SSR=\sum_{i=1}^{n}\left ( \hat{y_{i}}-\bar{y} \right )^{2}

拟合优度:0\leq R^{2}=\frac{SSR}{SST}=\frac{SST-SSE}{SST}=1-\frac{SSE}{SST}\leq 1

R^{2}越接近1,说明误差平方和越接近0,误差越小说明拟合的越好。

 测试代码如下:

y_hat=k*x+b; %拟合系数
ssr=sum((y_hat-mean(y)).^2);
sse=sum((y_hat-y).^2);
sst=sum((y-mean(y).^2);
r_2=ssr/sst;  %拟合优度

另:matlab中的cftool工具箱

clc,clear
x = rand(30,1) * 10;
y = 3 * exp(0.5*x) -5 + normrnd(0,1,30,1);
cftool

 注:当拟合函数不是“线性”函数是,可以用SSE作为拟合优度。

  • 1
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zedkyx

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值