python数据分析案例——零售商店电子销售订单分析

文章通过对零售商店的销售数据进行清洗、分析,探讨了消费情况、用户购买模式、RFM模型以及商品关联规则。发现消费金额、交易次数和商品购买数量波动大,新用户获取呈下降趋势,重要价值和保持客户是主要销售额来源。同时,用户生命周期与客户价值关系复杂,需要进一步策略优化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、项目背景

通过"扫描"零售商店电子销售点个别产品的条形码而获得的消费品销售的详细数据。

这些数据提供了有关所售商品的数量、特征和价值以及价格的详细信息。

二、数据来源

https://www.kaggle.com/marian447/retail-store-sales-transactions

三、提出问题

  • 消费情况分析及用户购买模式分析

  • RFM和CLV分析

  • 不同类别商品关联规则挖掘

四、理解数据

  • Date:购买日期

  • Customer_ID:用户ID

  • Transaction_ID:交易ID

  • SKU_Category:商品分类SKU编码

  • SKU:商品唯一SKU编码

  • Quantity:购买数量

  • Sales_Amount:购买金额


👇 👇 👇 更多精彩机密、教程,尽在下方,赶紧点击了解吧~

素材、视频教程、完整代码、插件安装教程我都准备好了,直接在文末名片自取就可


五、数据清洗

1.导入数据

import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
import seaborn as sns
%matplotlib inline

更改设计风格

plt.style.use('ggplot')
plt.rcParams['font.sans-serif'] = ['SimHei']


2.选择子集

第一列为数据编号,已有索引故删除

df.drop(columns='Unnamed: 0', inplace=True)
df.info()

3.删除重复值

df.duplicated().sum
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值