【应用回归分析】CH3 回归参数的估计2——最小二乘估计的性质

本文深入探讨了最小二乘估计在回归分析中的重要性,详细阐述了其无偏性和方差最小化的特性。通过定理3.2.1、3.2.2和推论3.2.1,证明了最小二乘估计是最佳线性无偏估计,并解释了判定系数(R²)在评估模型拟合度中的作用。此外,还讨论了在误差向量服从正态分布时,最小二乘估计的更多优良性质。
摘要由CSDN通过智能技术生成

目录

前言

一、​编辑的性质

1.【定理3.2.1】

(1)内容

(2)证明

(3)定理说明

2.【推论3.2.1】

(1)内容

(2)推论说明 

3.【定理3.2.2】

(1)内容

(2)证明

(3)定理说明

二、​编辑的性质

1.前言

2.【定理3.2.3】

(1)内容

(2)证明

(3)说明

三、误差向量​编辑服从正态分布时​编辑的性质

1.前言

2.【定理3.2.4】

(1)内容

(2)证明

3.【推论3.2.2】

(1)前言

(2)内容

(3)证明

4.【推论3.2.3】

(1)前言

(2)内容

(3)说明

四、判定系数

1.定义

2.统计意义

五、【例3.2.1】


前言

        无论从理论上还是从应用上,最小二乘估计都是最重要的估计,其原因是这种估计具有许多优良性质。

一、\hat{\beta }的性质

1.【定理3.2.1】

(1)内容

        对于线性回归模型(3.1.6),最小二乘估计\hat{\beta }=(X^{'}X)^{-1}X^{'}y具有下列性质

  • (a)E(\hat{\beta})=\beta
  • (b)Cov(\hat{\beta})=\sigma^2(X^{'}X)^{-1}

(2)证明

{\color{Blue} proof:}

{\color{Blue} Ey=E(X\beta+e)=X\beta\Rightarrow E(\hat{\beta})=(X^{'}X)^{-1}X^{'}E(y)=(X^{'}X)^{-1}X^{'}X\beta=\beta}

{\color{Blue} Cov(y)=Cov(X\beta+e)=Cov(e)=\sigma^2 I\Rightarrow Cov(\hat{\beta})=Cov[(X^{'}X)^{-1}X^{'}y]=(X^{'}X)^{-1}X^{'}\sigma^2 IX(X^{'}X)^{-1}=\sigma^2(X^{'}X)^{-1}}

(3)定理说明

        这个定理的第一条结论表明,最小二乘估计\hat{\beta }\beta的无偏估计,这就是说,我们的估计没有系统性偏差。在实际问题中当我们用\hat{\beta }去估计\beta时,有时可能会偏高,有时则可能会偏低,但这些正负偏差在概率上平均起来等于零。

2.【推论3.2.1】

(1)内容

        设cp*1常数向量,对于线性函数c^{'}\beta,我们称c^{'}\hat{\beta}c^{'}\beta的最小二乘估计。

  • (a)E(c^{'}\hat{\beta})=c^{'}\beta
  • (b)Cov(c^{'}\hat{\beta})=\sigma^2 c^{'}(X^{'}X)^{-1}c

(2)推论说明 

        对任意的线性函数c^{'}\hat{\beta}=c^{'}(X^{'}X)^{-1}X^{'}y,最小二乘估计c^{'}\hat{\beta}c^{'}\beta的无偏估计,且方差为\sigma^2 c^{'}(X^{'}X)^{-1}c。我们知道c^{'}\hat{\beta }=c^{'}(X^{'}X)^{-1}X^{'}y是观测值y_{1},y_{2},\cdots,y_{n}的线性函数,于是c^{'}\hat{\beta}c^{'}\beta的一个具有无偏性的线性估计。当然我们还可以构造出c^{'}\beta的许多其它的线性无偏估计,构成c^{'}\beta的线性无偏估计类。我们的问题是,最小二乘估计c^{'}\hat{\beta}在这个类中有什么特别的优良性呢?

3.【定理3.2.2】

(1)内容

        (Gauss-Markov)对于线性回归模型(3.1.6),在c^{'}\beta的所有线性无偏估计中,最小二乘估计c^{'}\hat{\beta}是唯一具有最小方差的估计。

(2)证明

{\color{Blue} proof:}

        设a^{'}yc^{'}\beta的任意一个线性无偏估计,于是c^{'}\beta=E(a^{'}y)=a^{'}X\beta,此式对一切p*1向量\beta都成立,因而必然有a^{'}X=c^{'}(3.2.1)。因为Var(a^{'}y)=\sigma^2 a^{'}a=\sigma^2\left \| a \right \|^2,对\left \| a \right \|^2作分解:

c^{'}\hat{\beta}=c^{'}(X^{'}X)^{-1}X^{'}y=(X(X^{'}X)^{-1}c)^{'}y

\left \| a \right \|^2=\left \| a-X(X^{'}X)^{-1}c+X(X^{'}X)^{-1}c \right \|^2=\left \| a-X(X^{'}X)^{-1}c\right \|^2+\left \| X(X^{'}X)^{-1}c\right \|^2+2c^{'}(X^{'}X)^{-1}X^{'}(a-X(X^{'}X)^{-1}c)(3.2.2)

        记(3.2.2)中第二项为\Delta _{1},利用推论3.2.1(b)得:

\sigma^2\Delta _{1}=\sigma^2 c^{'}(X^{'}X)^{-1}X^{'}X(X^{'}X)^{-1}c=\sigma^2c^{'}(X^{'}X)^{-1}c=Var(c^{'}\hat{\beta })

        再记(3.2.2)中第二项为\Delta _{2},利用(3.2.1)有:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值