自然语言的标引和检索

文章探讨了自然语言的标引过程,包括人工和自动标引,以及主题词选择的原则。同时,介绍了布尔、向量空间和概率三种检索模型。此外,提到了自然语言处理技术如何提升检索准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

自然语言的标引和检索学习笔记

一、自然语言的标引

1.1 标引的定义

标引是将文献主题内容用规定的词语(主题词)表示出来,并按照一定规律排列,形成检索工具的过程。

1.2 标引的作用

标引的主要作用是使用户能够快速地检索到所需信息。在信息爆炸的时代,标引的作用愈加突出。

1.3 标引的种类

按照标引产生的方式,标引可以分为人工标引和自动标引两类。

  • 人工标引:需要人工阅读文献,通过专业知识对文献内容进行描述,提取文献主题词或关键词。
  • 自动标引:利用计算机技术对文献进行自动分析,从文本中自动识别文献特征词,并将其作为标引项。

1.4 主题词的选择原则

  • 相关性原则:主题词应当和文献内容相关。
  • 可控性原则:主题词应当是有规范的,易于管理的。
  • 规范性原则:主题词应当符合国际上的规范。
  • 语言原则:主题词应当采用通用的语言名称。
  • 可检索性原则:主题词应当是符合检索系统需求的。

二、自然语言的检索

2.1 检索模型

检索模型是用于描述信息检索的数学模型,按照不同的检索模型,信息检索可以分为布尔模型、向量空间模型和概率模型。

2.2 布尔模型

布尔检索模型是最早的检索模型之一,它通过逻辑运算符号AND、OR、NOT把检索式构造为一个复合式子,以检索出符合用户要求的文献。

2.3 向量空间模型

向量空间模型是将文献看做高维的向量,每个维度表示文献中的一个词语。对查询语句进行向量化处理,利用余弦相似度计算文献与查询语句之间的相关性。

2.4 概率模型

概率模型是通过计算文献、查询语句的概率分布,以及两者的联合概率分布来计算文献与查询语句之间的相关性,属于统计学习模型。

2.5 自然语言处理技术在检索中的应用

自然语言处理技术包括分词、词性标注、命名实体识别、句法分析等。这些技术可以对文献进行深入的语义分析,提高检索的准确度。

三、总结

本文介绍了自然语言的标引和检索学习笔记。标引主要是将文献主题内容用规定的词语表示出来,并按照一定规律排列,形成检索工具的过程;检索模型则是用于描述信息检索的数学模型,按照不同的检索模型,信息检索可以分为布尔模型、向量空间模型和概率模型等。而自然语言处理技术则可以在检索中发挥重要作用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值