自然语言的标引和检索学习笔记
一、自然语言的标引
1.1 标引的定义
标引是将文献主题内容用规定的词语(主题词)表示出来,并按照一定规律排列,形成检索工具的过程。
1.2 标引的作用
标引的主要作用是使用户能够快速地检索到所需信息。在信息爆炸的时代,标引的作用愈加突出。
1.3 标引的种类
按照标引产生的方式,标引可以分为人工标引和自动标引两类。
- 人工标引:需要人工阅读文献,通过专业知识对文献内容进行描述,提取文献主题词或关键词。
- 自动标引:利用计算机技术对文献进行自动分析,从文本中自动识别文献特征词,并将其作为标引项。
1.4 主题词的选择原则
- 相关性原则:主题词应当和文献内容相关。
- 可控性原则:主题词应当是有规范的,易于管理的。
- 规范性原则:主题词应当符合国际上的规范。
- 语言原则:主题词应当采用通用的语言名称。
- 可检索性原则:主题词应当是符合检索系统需求的。
二、自然语言的检索
2.1 检索模型
检索模型是用于描述信息检索的数学模型,按照不同的检索模型,信息检索可以分为布尔模型、向量空间模型和概率模型。
2.2 布尔模型
布尔检索模型是最早的检索模型之一,它通过逻辑运算符号AND、OR、NOT把检索式构造为一个复合式子,以检索出符合用户要求的文献。
2.3 向量空间模型
向量空间模型是将文献看做高维的向量,每个维度表示文献中的一个词语。对查询语句进行向量化处理,利用余弦相似度计算文献与查询语句之间的相关性。
2.4 概率模型
概率模型是通过计算文献、查询语句的概率分布,以及两者的联合概率分布来计算文献与查询语句之间的相关性,属于统计学习模型。
2.5 自然语言处理技术在检索中的应用
自然语言处理技术包括分词、词性标注、命名实体识别、句法分析等。这些技术可以对文献进行深入的语义分析,提高检索的准确度。
三、总结
本文介绍了自然语言的标引和检索学习笔记。标引主要是将文献主题内容用规定的词语表示出来,并按照一定规律排列,形成检索工具的过程;检索模型则是用于描述信息检索的数学模型,按照不同的检索模型,信息检索可以分为布尔模型、向量空间模型和概率模型等。而自然语言处理技术则可以在检索中发挥重要作用。