Z检验学习笔记

Z检验是统计学中用于测试样本均值与总体均值差异的方法,包括单样本、双样本和配对样本三种类型。文章详细介绍了Z检验的基本原理、公式,以及如何在Python中使用scipy.stats库进行Z检验,并提供了一个实例应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Z检验学习笔记

在统计学领域中,Z检验是一种常用的假设检验方法,用于检验样本均值和总体均值是否存在显著性差异。本篇文章将介绍Z检验的基本原理、类型和公式、假设检验与统计量、实例应用以及Python代码进行分析。

基本原理

Z检验是通过比较样本均值和总体均值之间的差异,来判断两者是否具有显著性差异。在Z检验中,需要利用样本均值、总体均值、样本标准差和样本大小等信息,计算得到一个Z值,然后根据显著性水平和检验类型,确定拒绝域并做出结论。

类型和公式

Z检验可分为单样本Z检验、双样本Z检验和配对样本Z检验三种类型。下面是每种类型的公式:

  1. 单样本Z检验

样本均值$ \bar{x}$ 与总体均值$ \mu_0$ 的比较:

Z = x ˉ − μ 0 σ n Z = \frac{\bar{x} - \mu_0}{\frac{\sigma}{\sqrt{n}}} Z=n σxˉμ0

其中, n n n 为样本大小, σ \sigma σ 为总体标准差。

  1. 双样本Z检验

两个独立样本均值$ \bar{x_1}$ 和$ \bar{x_2}$ 的比较:

Z = ( x 1 ˉ − x 2 ˉ ) − ( μ 1 − μ 2 ) σ 1 2 n 1 + σ 2 2 n 2 Z = \frac{(\bar{x_1} - \bar{x_2}) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma^2_1}{n_1}+\frac{\sigma^2_2}{n_2}}} Z=n1σ12+n2σ22 (x1ˉx2ˉ)(μ1μ2)

其中, n 1 n_1 n1 和$ n_2$ 分别为两个样本的大小, σ 1 \sigma_1 σ1 和 $ \sigma_2$ 分别为两个总体的标准差。

  1. 配对样本Z检验

配对样本均值差$ \bar{d}$ 与总体均值差$ \mu_d$ 的比较:

Z = d ˉ − μ d σ d n Z = \frac{\bar{d}-\mu_d}{\frac{\sigma_d}{\sqrt{n}}} Z=n σddˉμd

其中, n n n 为样本大小, σ d \sigma_d σd 为差值的标准差。

假设检验与统计量

在Z检验中,需要进行一个假设检验过程。下面是单样本Z检验、双样本Z检验和配对样本Z检验的假设检验和对应的统计量:

  1. 单样本Z检验:

假设: H 0 : μ = μ 0 H_0: \mu = \mu_0 H0:μ=μ0 H 1 : μ ≠ μ 0 H_1: \mu \ne \mu_0 H1:μ=μ0

统计量: Z = x ˉ − μ 0 σ n Z = \frac{\bar{x} - \mu_0}{\frac{\sigma}{\sqrt{n}}} Z=n σxˉμ0

  1. 双样本Z检验:

假设: H 0 : μ 1 = μ 2 H_0: \mu_1 = \mu_2 H0:μ1=μ2 H 1 : μ 1 ≠ μ 2 H_1: \mu_1 \ne \mu_2 H1:μ1=μ2

统计量: Z = ( x 1 ˉ − x 2 ˉ ) − ( μ 1 − μ 2 ) σ 1 2 n 1 + σ 2 2 n 2 Z = \frac{(\bar{x_1} - \bar{x_2}) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma^2_1}{n_1}+\frac{\sigma^2_2}{n_2}}} Z=n1σ12+n2σ22 (x1ˉx2ˉ)(μ1μ2)

  1. 配对样本Z检验:

假设: H 0 : μ d = 0 H_0: \mu_d = 0 H0:μd=0 H 1 : μ d ≠ 0 H_1: \mu_d \ne 0 H1:μd=0

统计量: Z = d ˉ − μ d σ d n Z = \frac{\bar{d}-\mu_d}{\frac{\sigma_d}{\sqrt{n}}} Z=n σddˉμd

其中, n n n 为样本大小, σ \sigma σ 为总体标准差, σ 1 \sigma_1 σ1 σ 2 \sigma_2 σ2 σ d \sigma_d σd 分别为两个总体的标准差和差值的标准差。

通过计算得到的统计量,可以查表或计算p值,从而得到检验的结果。

实例应用

下面是一个使用单样本Z检验的实例,假设有一组学生的身高数据如下,我们想要检验这组数据的身高是否与总体身高均值相同:

178 , 173 , 165 , 169 , 176 , 171 , 160 , 170 , 172 , 174 178, 173, 165, 169, 176, 171, 160, 170, 172, 174 178,173,165,169,176,171,160,170,172,174

假设总体身高均值为 170cm,总体标准差为 5cm,显著性水平为 0.05。现在,我们可以使用单样本Z检验进行检验。

首先,计算样本均值 x ˉ \bar{x} xˉ 和标准差 s s s

x ˉ = 178 + 173 + 165 + 169 + 176 + 171 + 160 + 170 + 172 + 174 10 = 171.4 \bar{x} = \frac{178+173+165+169+176+171+160+170+172+174}{10}=171.4 xˉ=10178+173+165+169+176+171+160+170+172+174=171.4

s = ( 178 − 171.4 ) 2 + ( 173 − 171.4 ) 2 + . . . + ( 174 − 171.4 ) 2 9 = 5.345 s = \sqrt{\frac{(178-171.4)^2+(173-171.4)^2+...+(174-171.4)^2}{9}}=5.345 s=9(178171.4)2+(173171.4)2+...+(174171.4)2 =5.345

接下来,计算检验统计量 Z Z Z

Z = x ˉ − μ 0 σ n = 171.4 − 170 5 10 = 1.97 Z=\frac{\bar{x}-\mu_0}{\frac{\sigma}{\sqrt{n}}}=\frac{171.4-170}{\frac{5}{\sqrt{10}}}=1.97 Z=n σxˉμ0=10 5171.4170=1.97

最后,查找标准正态分布表得出的p值为 0.048,小于显著性水平 0.05,因此拒绝原假设,认为这组数据的身高与总体身高均值不同。

Python进行Z检验

在Python中,可以使用scipy.stats库进行Z检验。以下是一个使用单样本Z检验的例子:

import scipy.stats as stats

# 样本数据
data = [178, 173, 165, 169, 176, 171, 160, 170, 172, 174]

# 总体均值和标准差
mu = 170
std = 5

# 计算Z值和p值
z, p_value = stats.ttest_1samp(data, mu, axis=0)

# 打印结果
print("Z值为:", z)
print("p值为:", p_value/2) # 双侧检验需要除以2

在上面的例子中,我们首先导入数据文件,并定义总体均值和标准差。接下来,使用ttest_1samp()函数进行单样本Z检验,计算得到Z值和p值,并将其结果存储在zp_value变量中。最后,我们打印出结果。

总结

本篇文章介绍了Z检验的基本原理、类型和公式、假设检验与统计量、实例应用以及Python代码进行分析。在实际应用中,需要根据具体情况选择适当的Z检验类型,并根据显著性水平和检验类型确定拒绝域并做出结论。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值