Z检验学习笔记
在统计学领域中,Z检验是一种常用的假设检验方法,用于检验样本均值和总体均值是否存在显著性差异。本篇文章将介绍Z检验的基本原理、类型和公式、假设检验与统计量、实例应用以及Python代码进行分析。
基本原理
Z检验是通过比较样本均值和总体均值之间的差异,来判断两者是否具有显著性差异。在Z检验中,需要利用样本均值、总体均值、样本标准差和样本大小等信息,计算得到一个Z值,然后根据显著性水平和检验类型,确定拒绝域并做出结论。
类型和公式
Z检验可分为单样本Z检验、双样本Z检验和配对样本Z检验三种类型。下面是每种类型的公式:
- 单样本Z检验
样本均值$ \bar{x}$ 与总体均值$ \mu_0$ 的比较:
Z = x ˉ − μ 0 σ n Z = \frac{\bar{x} - \mu_0}{\frac{\sigma}{\sqrt{n}}} Z=nσxˉ−μ0
其中, n n n 为样本大小, σ \sigma σ 为总体标准差。
- 双样本Z检验
两个独立样本均值$ \bar{x_1}$ 和$ \bar{x_2}$ 的比较:
Z = ( x 1 ˉ − x 2 ˉ ) − ( μ 1 − μ 2 ) σ 1 2 n 1 + σ 2 2 n 2 Z = \frac{(\bar{x_1} - \bar{x_2}) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma^2_1}{n_1}+\frac{\sigma^2_2}{n_2}}} Z=n1σ12+n2σ22(x1ˉ−x2ˉ)−(μ1−μ2)
其中, n 1 n_1 n1 和$ n_2$ 分别为两个样本的大小, σ 1 \sigma_1 σ1 和 $ \sigma_2$ 分别为两个总体的标准差。
- 配对样本Z检验
配对样本均值差$ \bar{d}$ 与总体均值差$ \mu_d$ 的比较:
Z = d ˉ − μ d σ d n Z = \frac{\bar{d}-\mu_d}{\frac{\sigma_d}{\sqrt{n}}} Z=nσddˉ−μd
其中, n n n 为样本大小, σ d \sigma_d σd 为差值的标准差。
假设检验与统计量
在Z检验中,需要进行一个假设检验过程。下面是单样本Z检验、双样本Z检验和配对样本Z检验的假设检验和对应的统计量:
- 单样本Z检验:
假设: H 0 : μ = μ 0 H_0: \mu = \mu_0 H0:μ=μ0; H 1 : μ ≠ μ 0 H_1: \mu \ne \mu_0 H1:μ=μ0
统计量: Z = x ˉ − μ 0 σ n Z = \frac{\bar{x} - \mu_0}{\frac{\sigma}{\sqrt{n}}} Z=nσxˉ−μ0
- 双样本Z检验:
假设: H 0 : μ 1 = μ 2 H_0: \mu_1 = \mu_2 H0:μ1=μ2; H 1 : μ 1 ≠ μ 2 H_1: \mu_1 \ne \mu_2 H1:μ1=μ2
统计量: Z = ( x 1 ˉ − x 2 ˉ ) − ( μ 1 − μ 2 ) σ 1 2 n 1 + σ 2 2 n 2 Z = \frac{(\bar{x_1} - \bar{x_2}) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma^2_1}{n_1}+\frac{\sigma^2_2}{n_2}}} Z=n1σ12+n2σ22(x1ˉ−x2ˉ)−(μ1−μ2)
- 配对样本Z检验:
假设: H 0 : μ d = 0 H_0: \mu_d = 0 H0:μd=0; H 1 : μ d ≠ 0 H_1: \mu_d \ne 0 H1:μd=0
统计量: Z = d ˉ − μ d σ d n Z = \frac{\bar{d}-\mu_d}{\frac{\sigma_d}{\sqrt{n}}} Z=nσddˉ−μd
其中, n n n 为样本大小, σ \sigma σ 为总体标准差, σ 1 \sigma_1 σ1、 σ 2 \sigma_2 σ2和 σ d \sigma_d σd 分别为两个总体的标准差和差值的标准差。
通过计算得到的统计量,可以查表或计算p值,从而得到检验的结果。
实例应用
下面是一个使用单样本Z检验的实例,假设有一组学生的身高数据如下,我们想要检验这组数据的身高是否与总体身高均值相同:
178 , 173 , 165 , 169 , 176 , 171 , 160 , 170 , 172 , 174 178, 173, 165, 169, 176, 171, 160, 170, 172, 174 178,173,165,169,176,171,160,170,172,174
假设总体身高均值为 170cm,总体标准差为 5cm,显著性水平为 0.05。现在,我们可以使用单样本Z检验进行检验。
首先,计算样本均值 x ˉ \bar{x} xˉ 和标准差 s s s:
x ˉ = 178 + 173 + 165 + 169 + 176 + 171 + 160 + 170 + 172 + 174 10 = 171.4 \bar{x} = \frac{178+173+165+169+176+171+160+170+172+174}{10}=171.4 xˉ=10178+173+165+169+176+171+160+170+172+174=171.4
s = ( 178 − 171.4 ) 2 + ( 173 − 171.4 ) 2 + . . . + ( 174 − 171.4 ) 2 9 = 5.345 s = \sqrt{\frac{(178-171.4)^2+(173-171.4)^2+...+(174-171.4)^2}{9}}=5.345 s=9(178−171.4)2+(173−171.4)2+...+(174−171.4)2=5.345
接下来,计算检验统计量 Z Z Z:
Z = x ˉ − μ 0 σ n = 171.4 − 170 5 10 = 1.97 Z=\frac{\bar{x}-\mu_0}{\frac{\sigma}{\sqrt{n}}}=\frac{171.4-170}{\frac{5}{\sqrt{10}}}=1.97 Z=nσxˉ−μ0=105171.4−170=1.97
最后,查找标准正态分布表得出的p值为 0.048,小于显著性水平 0.05,因此拒绝原假设,认为这组数据的身高与总体身高均值不同。
Python进行Z检验
在Python中,可以使用scipy.stats
库进行Z检验。以下是一个使用单样本Z检验的例子:
import scipy.stats as stats
# 样本数据
data = [178, 173, 165, 169, 176, 171, 160, 170, 172, 174]
# 总体均值和标准差
mu = 170
std = 5
# 计算Z值和p值
z, p_value = stats.ttest_1samp(data, mu, axis=0)
# 打印结果
print("Z值为:", z)
print("p值为:", p_value/2) # 双侧检验需要除以2
在上面的例子中,我们首先导入数据文件,并定义总体均值和标准差。接下来,使用ttest_1samp()
函数进行单样本Z检验,计算得到Z值和p值,并将其结果存储在z
和p_value
变量中。最后,我们打印出结果。
总结
本篇文章介绍了Z检验的基本原理、类型和公式、假设检验与统计量、实例应用以及Python代码进行分析。在实际应用中,需要根据具体情况选择适当的Z检验类型,并根据显著性水平和检验类型确定拒绝域并做出结论。