T分布学习笔记

T分布是一种在小样本量下常用的概率分布,其自由度表示样本数量减1。随着样本量增大,T分布趋近于标准正态分布。文章介绍了T分布的定义、性质,包括其在假设检验中的应用,如T检验,并提供了一个使用Python生成T分布随机变量的代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

T分布学习笔记

T分布(Student’s t-Distribution)是一种概率分布,常用于小样本量情况下的统计推断。在实际应用中,我们会经常遇到T分布,因此有必要对其进行深入了解。

基本定义

  • 自由度(degree of freedom):T分布的自由度表示样本数量减1。

  • 概率密度函数: f ( x ) = Γ ( m + 1 2 ) m π Γ ( m 2 ) ( 1 + x 2 m ) − m + 1 2 f(x) = \frac{\Gamma(\frac{m+1}{2})}{\sqrt{m\pi}\Gamma(\frac{m}{2})}\left(1+\frac{x^2}{m}\right)^{-\frac{m+1}{2}} f(x)= Γ(2m)Γ(2m+1)(1+mx2)2m+1
    其中, m m m表示自由度, Γ ( ⋅ ) \Gamma(\cdot) Γ()表示伽玛函数。

  • 分布函数:无法用解析式表示,需要借助数值计算方法求解。

性质

  1. 当样本量 m m m很大时,T分布近似服从标准正态分布。
  2. T分布是对称的、钟形的,但比标准正态分布扁平一些。
  3. T分布的期望为0,方差为 m m − 2 \frac{m}{m-2} m2m m > 2 m>2 m>2)。

假设检验

T分布在假设检验中也有着广泛应用。一般地,若要检验一个样本的均值是否符合某种理论分布,则可以使用T检验(Student’s t-Test)。具体步骤如下:

  1. 根据样本数据计算出均值 x ˉ \bar{x} xˉ、标准差 s s s和样本量 n n n
  2. 计算 t = x ˉ − μ s / n t=\frac{\bar{x}-\mu}{s/\sqrt{n}} t=s/n xˉμ,其中 μ \mu μ表示理论均值。
  3. 对于显著性水平为 α \alpha α的假设检验,如果 t > t 1 − α 2 , n − 1 t>t_{1-\frac{\alpha}{2},n-1} t>t12α,n1 t < t α 2 , n − 1 t<t_{\frac{\alpha}{2},n-1} t<t2α,n1,则拒绝原假设;否则接受原假设。

其中, t 1 − α 2 , n − 1 t_{1-\frac{\alpha}{2},n-1} t12α,n1 t α 2 , n − 1 t_{\frac{\alpha}{2},n-1} t2α,n1表示自由度为 n − 1 n-1 n1、右侧面积分别为 1 − α 2 1-\frac{\alpha}{2} 12α α 2 \frac{\alpha}{2} 2α的T分位数。

使用示例

下面是使用Python代码生成自由度为 n − 1 n-1 n1的T分布随机变量的示例:

import numpy as np
from scipy.stats import t

n = 10
rv = t(df=n-1)
x = np.linspace(-5, 5, 1000)
y = rv.pdf(x)

import matplotlib.pyplot as plt
plt.plot(x, y)
plt.title("T Distribution (n={})".format(n))
plt.xlabel("X")
plt.ylabel("Probability Density")
plt.show()

总结

本篇博客介绍了T分布的基本定义、性质、假设检验以及使用示例。希望可以对读者在小样本量情况下的统计推断有所帮助。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值