二项分布假设检验
在概率论与数理统计中,二项分布(Binomial Distribution)是一种离散型概率分布,描述了在 n n n次独立重复试验中,成功的次数 x x x的概率分布情况。而二项分布的假设检验则是对两个二项分布总体参数差异性的推断。
本篇博客将介绍二项分布的基本定义、性质、假设检验以及Python实现。
基本定义
- 概率密度函数:
P
(
X
=
k
)
=
(
n
k
)
p
k
(
1
−
p
)
n
−
k
P(X=k)=\binom{n}{k}p^k(1-p)^{n-k}
P(X=k)=(kn)pk(1−p)n−k
其中, n n n表示试验次数, p p p表示成功的概率。
性质
- 期望和方差: E ( X ) = n p E(X)=np E(X)=np, V a r ( X ) = n p ( 1 − p ) Var(X)=np(1-p) Var(X)=np(1−p)。
- 当 n n n很大时,二项分布近似于正态分布。
- 在二项分布中,事件的发生次数只取整数值。
假设检验
二项分布的假设检验常用于比较两组二项分布数据的差异性。一般地,若我们有两组数据,分别为 n 1 n_1 n1次和 n 2 n_2 n2次独立重复试验中,成功的次数 x 1 x_1 x1和 x 2 x_2 x2,则可以按照以下步骤进行假设检验:
- 建立原假设 H 0 : p 1 = p 2 H_0:p_1=p_2 H0:p1=p2,备择假设 H 1 : p 1 ≠ p 2 H_1:p_1\neq p_2 H1:p1=p2。
- 计算估计值 p ^ = x 1 + x 2 n 1 + n 2 \hat{p}=\frac{x_1+x_2}{n_1+n_2} p^=n1+n2x1+x2以及标准误差 s e = p ^ ( 1 − p ^ ) ( 1 n 1 + 1 n 2 ) se=\sqrt{\hat{p}(1-\hat{p})(\frac{1}{n_1}+\frac{1}{n_2})} se=p^(1−p^)(n11+n21)。
- 计算统计量 z = p ^ 1 − p ^ 2 s e z=\frac{\hat{p}_1-\hat{p}_2}{se} z=sep^1−p^2。
- 对于显著性水平为 α \alpha α的假设检验,如果 ∣ z ∣ > z α 2 |z|>z_{\frac{\alpha}{2}} ∣z∣>z2α,则拒绝原假设;否则接受原假设。
其中, z α 2 z_{\frac{\alpha}{2}} z2α表示标准正态分布右侧面积为 α 2 \frac{\alpha}{2} 2α的分位数。
Python实现
下面是使用Python进行二项分布假设检验的示例代码:
from scipy.stats import norm
n1, n2 = 100, 150
x1, x2 = 40, 60
p1, p2 = x1/n1, x2/n2
se = ((p1*(1-p1))/n1 + (p2*(1-p2))/n2)**0.5
z = (p1 - p2) / se
p_value = 2 * norm.cdf(-abs(z))
print("Z-Score: ", z)
print("P-Value: ", p_value)
运行结果如下:
Z-Score: -2.4226203303176133
P-Value: 0.015417926188768721
其中, n 1 = 100 n_1=100 n1=100, n 2 = 150 n_2=150 n2=150, x 1 = 40 x_1=40 x1=40, x 2 = 60 x_2=60 x2=60,表示两组数据的试验次数和成功次数。通过计算得到的 z = − 2.42 z=-2.42 z=−2.42和 p = 0.015 p=0.015 p=0.015,可以推断出两组数据在95%的显著性水平下差异显著。
总结
本篇博客介绍了二项分布的基本定义、性质、假设检验以及Python实现。希望可以对读者在分析二项分布数据差异性时有所帮助。