求一元二次方程 3x2-20x-10 = 0 的根,计算结果保留两位小数

求一元二次方程 3x2-20x-10 = 0 的根,计算结果保留两位小数

解析:

#include <stdio.h>

int main() {
  double a = 3, b = 20, c = -10, delte, x1, x2;
  delte = b*b-4*a*c;
  x1 = (-b+sqrt(delte)) / (2 * a);
  x2 = (-b-sqrt(delte)) / (2 * a);
  printf("x_1 = %.2f, x_2 = %.2f\n", x1, x2);
}
使用二分法和牛顿法来解给定的一元二次方程 \(600 \times x^* - 550 \times x + 200 \times x - 20x - 1 = 0\) 的,在区间 [0.1, 1]中,我们首先需要对这两个方法做一下说明: **二分法**适用于连续且单调的函数,而对于非线性的方程,可能不适合直接应用,因为二分法假设每个中间都是解的一部分。但在实际编程中,我们可以将其用于验证牛顿法的结果。不过,由于二分法并不适合此题,我们将仅展示牛顿法的步骤。 **牛顿法**(也称为牛顿-拉弗森法)则更适合处理这类非线性问题,因为它通过构造函数的泰勒级数并逐次逼近解。以下是使用MATLAB实现牛顿法解的过程: ```matlab % 定义函数和它的导数 fun = @(x) 600*x.^2 - (550 + 200 - 20)*x - 1; dfun = @(x) 1200*x - (550 + 200 - 20); % 初始猜测在区间内 initial_guess = 0.5; % 选择一个在区间的中间 % 设置迭代终止条件 tol = 1e-4; % 精度要 max_iter = 100; % 最大迭代次数 for iter = 1:max_iter % 使用牛顿法公式 new_guess = initial_guess - fun(initial_guess) / dfun(initial_guess); % 检查是否满足精度要或到达最大迭代次数 if abs(new_guess - initial_guess) < tol break; end initial_guess = new_guess; end % 输出结果 root_newton = num2str(new_guess, &#39;%.4f&#39;); ``` 这个循环会持续运行,直到找到满足精度要,或者达到最大迭代次数。需要注意的是,对于复杂的方程,可能会需要多次调整初始猜测才能找到正确的
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

m0_72431373

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值