KNN分类算法的MATLAB实现以及可视化

本文详细介绍了KNN算法的基本原理、距离计算、K值选择、非参数性和惰性特性,以及MATLAB实现示例。探讨了KNN在不同场景下的适用性和局限性,包括数据特征、样本数量、分布和决策边界复杂性等因素。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、KNN简介

KNN算法,即K-Nearest Neighbors,是一种常用的监督学习算法,可以用于分类问题,并且在实际应用中取得了广泛的成功。

二、KNN算法的基本原理

对于给定的测试样本,KNN算法首先计算它与训练集中所有样本的距离。然后,根据这些距离,选择最近的K个邻居进行投票。对于分类任务,通常取前K个样本中类别最多的作为预测结果。

2.1、距离的定义

2.2、K的取值

K的取值比较重要,那么该如何确定K取多少值好呢?答案是通过交叉验证(将样本数据按照一定比例,拆分出训练用的数据和验证用的数据,比如8:2拆分出部分训练数据和验证数据),从选取一个较小的K值开始,不断增加K的值,然后计算验证集合的准确率,最终找到一个比较合适的K值。 和K-means不一样,当K值更大的时候,错误率会更高。这也很好理解,比如说你一共就35个样本,当你K增大到30的时候,KNN基本上就没意义了。且K值一般取奇数,这样可以保证能够取到标签的众数。在下图中K值很明显取K = 3。

三、KNN是一种非参的,惰性的算法模型

非参的意思并不是说这个算法不需要参数,而是意味着这个模型不会对数据做出任何的假设,与之相对的是线性回归(我们总会假设线性回归是一条直线)。也就是说KNN建立的模型结构是根据数据来决定的,这也比较符合现实的情况,毕竟在现实中的情况往往与理论上的假设是不相符的。惰性又是什么意思呢?想想看,同样是分类算法,逻辑回归需要先对数据进行大量训(tranning),最后才会得到一个算法模型。而KNN算法却不需要,它没有明确的训练数据的过程,或者说这个过程很快。

四、KNN算法的优缺点

不对数据分布做出假设,完全基于距离度量对样本特征进行提取;不需要提前进行训练,直接可以进行分类;思想简单,应用广泛。然而,它也有一些缺点,如过度依赖距离度量函数和K值的选择、计算量大、所需内存大、可解释性差、预测速度慢等。

五、自己编写KNN算法的MATLAB实现并可视化

clear;clc;clf;
% 假设我们有一些训练数据和测试数据
train_data = [1.0,1.2;
    1.2,1.2;
    1.35,1.8;
    1.3,1.6;
    1.33,1.5;
    1.7,2.0;
    2.2,2.0;
    2.1,2.5;
    2.3,4.3;
    2.5,4.1;
    2.7,3.0;
    3.2,4.4;
    3.5,4.1;
    4.1,5.0;
    3.9,4.2;
    3.7,4.4;
    3.5,4.0;
    4.2,1.2;
    4.3,1.3;
    5.0,2.6;
    5.6,3.6;
    5.4,4.0;]; % 训练数据的特征矩阵
train_labels = [0;0;0;0;0;0;0;0;0;0;0;1;1;1;1;1;1;2;2;2;2;2]; % 训练数据的标签向量
test_data = [ 5.8,3.6;
    3.0,3.0;
    1.1,2.3;
    1.0,1.0;
    1.2,4.0;
    5.2,2.0;
    3.7,4.0;]; % 测试数据的特征矩阵
K = [3,5,7,9,11];
accuracy_value = zeros(1,5);
rng(111) %固定随机数种子
for j = 1:5
    % 假设 X 是你的特征矩阵,大小为 [NxD],其中 N 是样本数,D 是特征数
    % 假设 Y 是你的标签向量,大小为 [Nx1]
    % 设定k折交叉验证的k值
    k = K(j); 
    % 创建k折交叉验证的分区
    cvp = cvpartition(size(train_data, 1), 'KFold', k);
    % 初始化用于存储结果的变量
    accuracy = zeros(1, k); % 用于存储每次迭代的准确率
    % 循环进行k次训练和测试
    for i = 1:cvp.NumTestSets
        % 训练集和测试集的索引
        trainingIdx = training(cvp, i);
        testIdx = test(cvp, i);
        % 从原始数据中分离训练和测试数据
        XTrain = train_data(trainingIdx, :);
        YTrain = train_labels(trainingIdx);
        XTest = train_data(testIdx, :);
        YTest = train_labels(testIdx);
        % 假设你已经有了预测标签,存储在变量 predictedLabels 中
        predictedLabels =  knn_classifier(XTrain,YTrain,XTest,k);
        % 计算准确率
        correct = sum(predictedLabels == YTest);
        accuracy(i) = correct / length(YTest);
    end
    % 计算平均准确率
    meanAccuracy = mean(accuracy);
    accuracy_value(j) = meanAccuracy;
end
figure(1)
plot(K,accuracy_value,'LineWidth',1.5,'Marker','*')
xlabel('k')
ylabel('accuracy')
[L,I] = max(accuracy_value);
K = K(I);
% 调用KNN分类器函数
predicted_labels = knn_classifier(train_data, train_labels, test_data, K);
% 显示预测结果
disp(predicted_labels);
figure(2)
indices1 = find(train_labels==0);
indices2 = find(train_labels==1);
indices3 = find(train_labels==2);
h1 = scatter(train_data(indices1,1),train_data(indices1,2),25,"red","filled");
hold on
h2 = scatter(train_data(indices2,1),train_data(indices2,2),25,"blue","filled");
h3 = scatter(train_data(indices3,1),train_data(indices3,2),25,"green","filled");
indices11 = find(predicted_labels==0);
indices22 = find(predicted_labels==1);
indices33 = find(predicted_labels==2);
h11 = scatter(test_data(indices11,1),test_data(indices11,2),"red","o",'LineWidth',1.5);
h22 = scatter(test_data(indices22,1),test_data(indices22,2),"blue","o",'LineWidth',1.5);
h33 = scatter(test_data(indices33,1),test_data(indices33,2),"green","o",'LineWidth',1.5);
% % 创建网格以可视化决策边界   
xMin = min(train_data(:,1));  
xMax = max(test_data(:,1));  
yMin = min(test_data(:,2));  
yMax = max(train_data(:,2));
h = 0.02;  
[xx, yy] = meshgrid(xMin:h:xMax, yMin:h:yMax);  
% 预测网格点的标签  
labels = knn_classifier(train_data, train_labels,[xx(:), yy(:)],K);  
labels = reshape(labels, size(xx));
alpha = 0.2;
contourf(xx, yy, labels, 'LineWidth',1.5,'FaceAlpha',alpha); % 绘制决策边界  
title(['KNN Decision Boundary (K = ' num2str(K) ')']);  
xlabel('Feature 1');  
ylabel('Feature 2'); 
box on

function label = knn_classifier(train_data, train_labels, test_data, K)
% train_data: 训练数据的特征矩阵,大小为 [NxD],其中N是样本数,D是特征维度
% train_labels: 训练数据的标签向量,大小为 [Nx1]
% test_data: 测试数据的特征矩阵,大小为 [MxD]
% K: 最近邻居的数量
% label: 测试数据的预测标签向量,大小为 [Mx1]
%——————————————————————————————————————————————————————————————
% 初始化预测标签向量
label = zeros(size(test_data, 1), 1);
% 遍历测试数据集中的每个样本
for i = 1:size(test_data, 1)
    % 计算测试样本到所有训练样本的距离
    % 距离函数d(x,y)需要满足三个条件:
    % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    % d(x,y)>=0,d(x,y)==0<=>x==y(正定性)
    % d(x,y)==d(y,x)(对称性)
    % d(x,y)<=d(x,z)+d(z,y)(三角不等式)
    %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    distances = sum((train_data - test_data(i, :)).^2, 2); %欧氏距离
%   distances = sum(abs(train_data - test_data(i, :)),2); %曼哈顿距离
    % 获取距离排序后的索引
    [~,sortedDistIndices] = sort(distances); %默认升序排列
    % 找出最近的K个邻居的索引
    neighbors_indices = sortedDistIndices(1:K);
    % 提取这K个邻居的标签
    neighbors_labels = train_labels(neighbors_indices);
    % 统计并找出最常见的标签
    [most_common_label, ~] = mode(neighbors_labels); %众数
    % 将最常见的标签赋给测试样本
    label(i) = most_common_label;
end
end

分别运用欧氏距离和曼哈顿距离的运行结果如下图:

 六、KNN算法的适用范围:

  1. 数据特征明确且重要:当数据的特征空间具有清晰的边界,且特征对分类结果有显著影响时,KNN算法通常能表现出色。这是因为KNN直接基于特征空间中的距离来进行分类,所以特征的选择和表示对于算法性能至关重要。

  2. 样本数量适中:对于中等大小的数据集,KNN算法通常是一个有效的选择。然而,当数据集非常大时,KNN的计算成本可能会显著增加,因为需要计算每个查询点与所有训练点之间的距离。在这种情况下,可能需要考虑使用更高效的算法或数据结构来加速距离计算。

  3. 数据分布不均匀:KNN算法对数据的分布没有严格的假设,因此它适用于那些不符合正态分布或其他特定分布的数据集。特别是在数据分布不均匀或存在多个类别的情况下,KNN算法能够很好地处理这些复杂情况。

  4. 类别决策边界复杂:当类别的决策边界非常复杂或不规则时,KNN算法可能是一个好选择。由于KNN算法是基于实例的,它可以很好地捕捉数据中的局部结构和模式,从而在处理复杂决策边界时表现出色。

  5. 实时更新:KNN算法在需要实时更新分类模型的情况下非常有用。由于它不需要显式的训练阶段,只需存储训练数据即可,因此当新的数据点出现时,可以很容易地将其纳入分类过程中。

需要注意的是,虽然KNN算法在某些情况下表现良好,但它也有一些局限性。例如,它对特征的缩放和噪声敏感,可能需要进行特征预处理和参数调优以获得最佳性能。此外,KNN算法的计算成本随着数据集的增长而增加,因此在处理大型数据集时可能不够高效。在选择是否使用KNN算法进行分类时,需要综合考虑这些因素。

### 关于KNN算法的PPT资料下载 目前无法直接提供具体的PPT文件下载链接,但可以指导如何制作一份高质量的KNN算法PPT,并基于已有参考资料[^1][^2]整理相关内容。 以下是构建KNN算法PPT的主要框架: #### 1. **概述** - 简述什么是KNN算法及其应用场景。 - KNN是一种简单有效的监督学习方法,用于分类和回归任务。其核心思想是通过已知样本的距离来预测未知样本所属类别或数值。 #### 2. **算法逻辑** - 描述KNN的工作原理。 - 输入待分类的数据点,计算它与训练集中所有数据点之间的距离;选取距离最小的前K个邻居;根据多数投票原则决定该数据点的类别[^2]。 #### 3. **实现步骤** - 数据收集:明确所需特征并获取相应数据集。 - 数据准备:清洗、标准化处理原始数据以便后续操作更加高效准确。 - 参数设定(K值):合理选择近邻数量直接影响最终效果的好坏。 - 距离度量:采用不同类型的测距方式如欧几里得(Euclidean),曼哈顿(Manhattan),切比雪夫(Chebyshev)或者明可夫斯基(Minkowski)。 #### 4. **关键要素** - 阐述影响模型性能的关键因素——K值得当与否会显著改变结果质量; - 较小的K容易引起过拟合现象而较大的K可能导致欠拟合情况发生。 - 各种距离公式的定义及适用场景分析: ```python import numpy as np def euclidean_distance(x, y): return np.sqrt(np.sum((x-y)**2)) def manhattan_distance(x, y): return np.abs(x-y).sum() def chebyshev_distance(x, y): return np.max(np.abs(x-y)) def minkowski_distance(x, y, p=2): return (np.sum(np.abs(x-y)**p))**(1/p) ``` #### 5. **工具库应用** - 推荐使用`scikit-learn`中的现成函数简化开发流程: - `KNeighborsClassifier`: 实现分类功能。 - 主要参数解释如下表所示: | 参数名 | 默认值 | 功能描述 | |-----------------|-----------|--------------------------------------------------------------------------| | n_neighbors | 5 | 定义考虑多少个最近邻节点 | | weights | 'uniform' | 权重分配策略,默认均匀分布也可设置为按距离倒数加权 | | algorithm | 'auto' | 自动挑选合适的索引结构加速查询过程 | 示例代码片段展示基本调用形式: ```python from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.neighbors import KNeighborsClassifier iris = load_iris() X_train, X_test, y_train, y_test = train_test_split( iris.data, iris.target, test_size=0.2, random_state=42 ) scaler = StandardScaler().fit(X_train) X_train_scaled = scaler.transform(X_train) X_test_scaled = scaler.transform(X_test) knn_clf = KNeighborsClassifier(n_neighbors=3) knn_clf.fit(X_train_scaled, y_train) accuracy = knn_clf.score(X_test_scaled, y_test) print(f'Test Accuracy: {accuracy:.2%}') ``` #### 6. **案例分享** - 结合实际例子加深理解比如手数字识别MNIST数据库上的表现评估等等. --- ###
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值