一、引言
深度学习框架武林盟主之争的历历史,大概是这个样子的。15年底之前Caffe是老大哥,随着Tensorflow的诞生,霸占江湖数载,19年起无论从学术界还是工程界PyTorch已经霸占了半壁江山!
二、张量和矩阵的联系
一维张量是向量,二维张量是矩阵,张量可以是多维的,张量包含矩阵。
三、创建张量
(1)构建一个6x3的未初始化的矩阵
import torch
x=torch.empty(6,3)
x
结果:
(2)创建随机矩阵
x=torch.rand(5,3)
x
结果:
(3)初始化零矩阵dtype是long类型
x=torch.zeros(5,3,dtype=torch.long)
x
结果;
四、size()、view()等同于numpy中的shape()、reshape()
x=torch.zeros(5,3,dtype=torch.long)
x.size()
结果:
x=torch.randn(4,4)
y=x.view(16)
z=x.view(-1,8) #-1代表自动进行计算16/8=2这个意思
print(x.size(),y.size(),z.size())
结果:
五、tensor和array相互转换
(1)torch转array
a=torch.ones(5)
b=a.numpy()
b
结果:
(2)array转tenor
import numpy as np
a=np.ones(5)
b=torch.from_numpy(a)
b
结果:
六、Autograd: 自动求导
当完成(正向)计算之后, 我们可以调用backward(),PyTorch会自动的把所有的梯度都计算好。与这个tensor相关的梯度都会累加到它的grad属性里。
如果不想计算这个tensor的梯度,我们可以调用detach(),这样它就不会参与梯度的计算了。
x=torch.rand(1)
b=torch.rand(1,requires_grad=True)#设置了代表可以求导,不设置代表常量
w=torch.rand(1,requires_grad=True)
y=w*x
z=y+b
z.backward()
w.grad
b.grad
x
结果: